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14:00-14:20 Marcus GASTREICH, 
BioSolveIT Germany 

Why Everybody Talks About Chemical 
Space Exploration 

14:20-14:40 
 

David RINALDO 
Schrödinger GmbH 

Finding Hits in Large Chemical Spaces 
by Combining Docking with Deep 
Learning 

14:40-15:00 Brice HOFFMANN,  
IKTOS, France 

Representing, predicting, and 
generating simple and complex 
peptides 

   

15:00-17:00 Tutorial 1 –Gilles MARCOU 
University of Strasbourg, France 

Tutorial on Generative Topographic 
Mapping Landscapes 

17:00 - 19:00 Poster session Beer & Bretzel 

  



6 
 

Wednesday 29 June 

 

9:00 - 9:40 Alex TROPSHA 
University of North Carolina, USA 

Development of Biomedical 
Knowledge Graphs and their 
application to drug discovery 

 

 

9:40-10:20 Hanoch SENDEROWITZ,  
Bar Ilan University, Israel 

Materials Informatics: The marriage 
of materials and data sciences 

10:20-10:40 coffee break 

10:40-11:20 Thierry LANGER 
University of Vienna, Austria 

Approaches to Next Generation 
Pharmacophore Modelling 

11:20-12:00 Pavel POLISHCHUK 
Palacky University, Czech Republic 

Explainable artificial intelligence: 
evolution, achievements and 
perspectives 

12:00-14:00 Lunch 

14:00-14:20 
Francois BERENGER 

University of Tokyo, Japan 

Molecular Generation by Fast 
Assembly of (Deep)SMILES 
Fragments 

14:20-14:40 Joao AIRES-DE-SOUSA 
New University of Lisbon, Portugal 

ML prediction of C-H bond energies: 
calibration of DFT-based models with 
experimental data 

14:40-15:00 Matthieu MONTES 
HESAM University, Paris, France 

VTX: High-performance molecular 
structure and dynamics visualization 
software 

   

15:00-17:00 
 

Tutorial 2 –Célien JACQUEMARD 
University of Strasbourg, France 

Comparison of binding sites for 
fragment based-drug discovery 

17:00 - 19:00 Poster session Beer & Bretzel 

 

Thursday 30 June 

 

9:00 - 9:40 Ola ENGKVIST 
AstraZeneca, Gothenburg, Sweden 

AI for drug design an industrial 
perspective 

9:40-10:20 Johannes KIRCHMAIR 
University of Vienna, Austria 

Cheminformatics in Natural Product-
based Drug Discovery 

10:20-10:40 coffee break 

10:40-11:00 Yuliana ZABOLOTNA, 
University of Strasbourg, France  

ChemSpace Atlas: Multiscale 
Chemography of Ultra-Large 
Libraries For Drug Discovery 

11:00-11:20 Črtomir PODLIPNIK 
University of Ljubljana, Slovenia 

COVID.SI - A Crowdsourced Drug 
Discovery Project 

11:20-11:40 Johanna GIOVANNINI 
University of Caen, France 

Towards DAG-based interactive 
pharmacophore exploration: 
application to the BCR-ABL ligand set 

11:40-12:00 
Moritz WALTER 

University of Sheffield, United Kingdom 

 

Interpreting Neural Network Models for 
Toxicity Prediction by Extracting 
Learned Chemical Features 

12:00-14:00 Lunch 

15:00-19:00 Cultural Program 

19:00 Conference Dinner 

  



7 
 

Friday 1 July 

 

   

9:00 - 9:40 
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Artem CHERKASOV  

University of British Columbia, Canada 

Deep Docking – the AI-enabled 
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screening 
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Olivier TABOUREAU 

Paris Cité University, France  
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Novartis, Switzerland   
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Generative Chemistry Models 
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Poster session    

1 AKHMETSHIN Tagir HyFactor: Hydrogen-count labelled graph-based defactorization 
autoencoder 

2 ASGARKHANOVA Farah Computer-aided design of selective chemical probes of 
angiotensin-converting enzyme 2 

3 BAYBEKOV Shamkhal Prediction of DMSO solubility for fragment-based screening 

4 BORT William Harnessing the “creativity” of AI to generate novel chemical 
reactions 

5 CHEN Ya Cheminformatic Analysis of Ring Systems in Natural Products 

6 CHIESA Luca  A new machine learning based method for ADRB2 agonist  
detection using single-ligand dynamic interaction data 

7 BENKAIDALI Lydia Visualization and analysis of metabolomic space of Alzheimer’s 
disease using Generative topographic mapping 

8 LEGEHAR Ashenafi  Drugmapper: a Web Resource to Explore Active Pharmaceutical 
Ingredients (Apis) 

9 MERVEILLE KOSSIWA 
Eguida  

Protein subpocket cloud comparison revealed similarity between 
HIV-1 reverse transcriptase and tumor necrosis factor binding 
sites 

10 GAMBACORTA Nicola PLATO: a user-friendly web platform for target fishing and 
bioactivity prediction 

11 GAWALSKA Alicja Application of automated machine learning in search for multi-
target-directed ligands blocking PDE4B, PDE8A and TRPA1 ion 
channel with potential use in the treatment of asthma and COPD  

12 GESLIN Damien Deciphering a pharmacophore network generated from BCR-ABL 
data 

13 LEHEMBRE Etienne  Towards DAG-based interactive pharmacophore exploration 

14 IWATA Michio Dynamic sensitivity analysis to predict time-course drug 
transcriptomic responses of the cellular system 

15 JAMROZIK Marek Computer-aided search for new anthracycline antibiotic 
reductases inhibitors with a potential to support anticancer 
therapy 

16 JONCZYK Jakub Molecular modelling and machine learning techniques in search 
for novel SARS-CoV-2 main protease inhibitors 

17 KAITOH Kazuma Scaffold-Retained Structure Generator to Extensively Produce 
Molecules with Unique Chemical Substructures 

18 LAMANNA Giuseppe DeLA-Drug: A Deep Learning Algorithm for Automated Design of 
Drug-like Analogues 

19 HANDA Koichi  Prediction of Compound Plasma Concentration Time Profiles 
after Oral Administration in Mice Using Random Forests  

20 OUDAHMANE Mehdi Flexible Protein-Ligand Docking Protocol: a Case Study on the 
Androgen Receptor 

21 PEREBYINIS Mariana  Assessment of the overlap between the ‘on-the-shelf’ drug-like 
space and ultra-large ‘on-demand’ combinatorial libraries 
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22 PEREZ-PENA Helena Structure-guided design of novel tubulin binders – towards site-
specific cysteine targeting 

23 PIKALYOVA Karina HIV-1 drug resistance profiling using amino acid sequence space 
cartography 

24 PIKALYOVA Regina  Exploration of the Chemical Space of DNA-Encoded Libraries 

25 PLYER Luis Implementation of a Soft Grading System for Chemistry in a 
Moodle Plugin 

26 REVILLO IMBERNON Julia  Comprehensive analysis of commercial fragment libraries 

27 RUGARD Marylène Chemo-biological analysis applied to the olfaction field 

28 SANTHAPURI Sai 
Prashanth 

Visualization and analysis of metabolomic space of Alzheimer’s 
disease using Generative topographic mapping 

29 SELLAMI Asma Predicting ligand binding to nuclear receptors using a pipeline 
combining docking and pharmacophore models 

30 SHERMUKHAMEDOV 
Shokirbek 

Machine-learning for predicting material properties with atomistic 
potentials 

31 SINDT François  Protein-applied computer vision and deep generative linking to 
generate potent kinase inhibitors: Influence of fragments 
definition 

32 TROMELIN Anne Study of odorants sharing the odor notes of an aroma blending 
mixture by a pharmacophore approach 

33 VOLKOV Mikhail  Applicability of graph neural networks to binding affinities 
prediction from protein-ligand structures 

34 WALTER Moritz Interpreting neural network models for toxicity prediction by 
extracting learned chemical features 

35 OLENEVA Polina GTM-based analysis of the chemical space of the Chimiothèque 
Nationale 

36 ZABOLOTNA Yuliana Synt-On: A New Open-Source Tool for Synthon-Based Library 
Design and Building Blocks Analysis 

37 ZABOLOTNA Yuliana ChemSpace Atlas: Multiscale Chemography of Ultra-Large 
Libraries for Drug Discovery 

38 ZANKOV Dmitry Multi-Instance Learning Approach to Predictive Modeling of 
Catalyst Enantioselectivity 

39 ZHANG Chonghuan Exploration of bioinformatic domain based on data mining, 
reaction predictions and enzyme promiscuous predictions 

40 PETER Sonja  Computational elucidation of GPCR allosteric modulators  

41 VILLACAMPA Marina  Machine Learning to Discover Antibiotics Against Klebsiella 
Pneumoniae  

42 REHIOUI Hajar  Pharmacophores vs circular fingerprints with learned feature 
transformation before clustering. Comparative studies on Bcr-Abl 
data. 

43 PINEL Philippe  Large-step scaffold hopping benchmark 
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[L1] Rationalizing Molecular Promiscuity through Data Analysis and 
Explainable Machine Learning 

 
Jürgen BAJORATH 

 
Department of Life Science Informatics, B-IT, LIMES Program Chemical Biology and Medicinal 
Chemistry, University of Bonn, Endenicher Allee 19c, D-53115 Bonn, Germany 

 
 

Multi-target activity of small molecules, also termed promiscuity, leads to desired and 
undesired effects in drug discovery. Exploring the ability of small molecules to form pseudospecific 
interactions with different targets is of interest to better understand molecular recognition 
phenomena and devise multi-target drug design strategies. In addition to proteomics or target 
profiling, compound promiscuity can also be investigated computationally, for example, through 
systematic analysis of structural and activity data and diagnostic machine learning for hypothesis 
testing. These studies confirm the presence of structural features that distinguish multi- and single-
target compounds. Explaining machine learning predictions reveals structural characteristics of 
promiscuous compounds. 
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[L2] De Novo Molecular Design with Machine Intelligence 
 

Gisbert SCHNEIDER 

 
ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland; ETH 
Singapore SEC Ltd, Singapore. 
 

 

Molecular design may be regarded as a pattern recognition process. Chemists are skilled in 
visual chemical structure recognition and their association with (retro)synthesis routes and molecular 
properties. In this context, various “artificial intelligence” (AI) methods have emerged as potentially 
enabling technology for drug discovery and automation, because these systems aim to mimic the 
chemist’s pattern recognition process and take it to the next level by considering the available 
domain–specific data and associations during model development. Part of the appeal of applying AI 
methods in drug design lies in the potential to develop data-driven, implicit model building processes 
to navigate vast datasets and to prioritize alternatives. This concept represents at least a partial 
transfer of decision power to a machine intelligence, and could be viewed as synergistic with human 
intelligence; that is, a domain-specific implicit AI that would augment the capabilities of chemists in 
molecular design and selection. More ambitiously, the ultimate challenge for drug design with AI is 
to autonomously generate new chemical entities with the desired properties from scratch (de novo), 
without the need for the often prohibitively costly experimental compound screening. 

We will review the principles of AI methods for de novo drug design, emphasizing ligand-
based approaches that have proven useful and reliable in “little-data” scenarios. Selected 
prospective case studies will be presented, ranging from targeted molecular design to fully 
automated design-make-test-analyze cycles. We provide a critical assessment of the possibilities 
and limitations of the individual approaches and dare forecasting the future of drug design with 
machine intelligence. 

 
 

References: 
 

Grisoni, F., Huisman, B., Button, A., Moret, M., Atz, K., Merk, D., Schneider, G. (2021) Combining generative 
artificial intelligence and on-chip synthesis for de novo drug design. Science Advances 7, eabg3338. 
 
Friedrich, L., Cingolani, G., Ko, Y.-H., Iaselli, M., Miciaccia, M., Perrone, M. G., Neukirch, K., Bobinger, V., 
Merk, D., Hofstetter, R. K., Werz, O., Koeberle, A., Scilimati, A., Schneider, G. (2021) Learning from nature: 
From a marine natural product to synthetic cyclooxygenase-1 inhibitors by automated de novo design. 
Advanced Science 8, 2100832. 
 
Schneider, P., Walters, W. P. Plowright, A. T., Sieroka, N., Listgarten, J., Goodnow Jr., R. A., Fisher, J., 
Jansen, J. M., Duca, J. S., Rush, T. S., Zentgraf, M., Hill, J. E., Krutoholow, E., Kohler, M., Blaney, J., Funatsu, 
K., Luebkemann, C., Schneider, G. (2020) Rethinking drug design in the artificial intelligence era. Nature 
Reviews Drug Discovery 19, 353–364. 
 
Schneider, G. (2018) Automating drug discovery. Nature Reviews Drug Discovery 17, 97–113. 
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[L3] In silico models for the REACH and the food regulation: 
perspectives for the near future 

 
Emilio BENFENATI  

 
Laboratory of Chemistry and Environmental Toxicology, Mario Negri Institute for Pharmacological 
Research, Milano, Italy 

 

 
In silico models can and should provide tools to reduce the impact of chemical substances in 

our life, minimizing the risk for the human health and the environment. These tools should be cheap 
and interconnected. The policy and society require documentation and transparency. The in silico 
models should cope with multiple features, since they should explore toxicodynamic and 
toxicokinetic properties, related to human and environment, within the One Health strategy. At the 
same time, these tools should be linked with tools used by industry, with approaches suitable to 
address functional use, to investigate in the same system both adverse and beneficial properties. 

We will provide examples of tools able to deal with tens of models simultaneously, addressing 
hazard and exposure at the same time, merging numerical models and predictive ones. The JANUS 
software for instance integrates 48 models for prioritization, the VERMEER tools predict risks for 
specific scenarios, and the ToxEraser tools suggest safer substances, to replace the riskiest ones. 

The specific regulatory thresholds are incorporated into the tools, which apply batteries of the 
VEGA models, depending on the needs. The VEGAHUB system offers these solutions 
(ww.vegahub.eu). However, the challenges are many more, and networking solutions have to be 
planned, facilitating links between different platforms. These are explored within the CONCERT 
REACH and the OptiTox projects, for instance, addressing the REACH and the food regulations. 
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[L4] Learning patterns of chemical reactivity from experimental data 
 

Connor COLEY 
 

Department of Chemical Engineering, Department of Electrical Engineering and Computer Science 
Massachusetts Institute of Technology, Cambridge, USA 

 
 

The abundance of chemical reaction data in tabulated databases has enabled new data-
driven approaches in reaction informatics. In particular, data-driven programs for Computer-Aided 
Synthesis Planning have rapidly matured and can now propose plausible synthetic pathways for 
many druglike compounds. We will discuss cheminformatic and machine learning-based approaches 
for learning patterns of chemical reactivity to perform the core tasks of synthesis planning: 
retrosynthesis, reaction condition recommendation, and reaction outcome prediction.  
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[L5] Chemoinformatics operating in Chemical Space 
 

Matthias RAREY 

 
University of Hamburg, ZBH – Center for Bioinformatics, Bundesstraße 43, 20146 Hamburg, 
Germany  
 
 

With the rise of large make-on-demand chemical fragment spaces the need to directly 
operate in chemical space rather than in chemical libraries emerged. Due to the shear size, 
enumerating the spaces to libraries is highly inefficient and energy wasting, in many cases even 
impossible. Many methods working with chemical spaces are heuristic, i.e. they do not give any 
optimality guarantee. But this hasn't to be like this. Chemoinformatics standard operations like 
similarity and substructure search can be done directly in chemical fragment space with little to no 
approximation loss on standard desktop computers. In this talk, chemical space algorithms, their 
performance data and some applications will be presented. 
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[L6] Development of Biomedical Knowledge Graphs and their 
Application to Drug Discovery 

 
Alexander TROPSHA 

 
Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North 
Carolina, Chapel Hill, NC, 27599, USA. 
 
 

The volume of biomedical research data stored in various databases has grown immensely 
in recent years due to the proliferation of high-throughput biomedical ‘-omics’ technologies. Nearly 
all of respective databases, or ‘knowledge sources’ (KSs), address a particular area of biomedical 
research, leading to natural diversity but also growing disintegration between individual KSs, which 
generates downstream inefficiencies when mining diverse databases for knowledge discovery. 
Expanding efforts, both in academia and industry, are focused on the development of methods and 
tools to enable semantic integration and concurrent exploration of disparate biomedical KSs, using 
specially constructed biomedical ‘graph knowledgebases’ (GKBs) that support the generation of new 
knowledge through the application of reasoning tools and algorithms. Our group has contributed to 
these efforts by initiating the development of a GKB-based question-answering system termed 
Reasoning Over Biomedical Objects linked in Knowledge-Oriented Pathways (ROBOKOP) [1], [2]. 
ROBOKOP’s publicly accessible user interface (UI) [3] allows users to address both relatively simple 
questions such as “what genes are associated with drug-induced liver injury?” and more complex 
ones such as “what drugs could be used to treat airborne pollutant–induced asthma exacerbations 
in patients who are non-responsive to traditional medications?” I will discuss the development of 
ROBOKOP and provide examples of applications including the elucidation of Clinical Outcome 
Pathways of drug action and drug repurposing including methodologies relying on knowledge graph 
embedding [4]. 

 
 
 

Bibliography:  
 

[1] K. Morton et al., “ROBOKOP: An abstraction layer and user interface for knowledge graphs to support 
question answering,” Bioinformatics, vol. 35, no. 24, pp. 5382–5384, Dec. (2019), doi: 
10.1093/bioinformatics/btz604. 
[2] C. Bizon et al., “ROBOKOP KG and KGB: Integrated Knowledge Graphs from Federated Sources.,” J. 
Chem. Inf. Model., vol. 59, no. 12, pp. 4968–4973, Dec. (2019), doi: 10.1021/acs.jcim.9b00683. 
[3] “ROBOKOP.” https://robokop.renci.org/. 
[4] C. Moon et al., “Learning Drug-Disease-Target Embedding (DDTE) from knowledge graphs to inform drug 
repurposing hypotheses,” J. Biomed. Inform., vol. 119, p. 103838, Jul. (2021), doi: 
10.1016/J.JBI.2021.103838. 
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[L7] Materials Informatics: The marriage of materials and data sciences 
 

Omer KASPI,a Hadar BINYAMIN,a Abraham YOSIPOF,b Hanoch SENDEROWITZa 

 
a Department of Chemistry, Bar Ilan University, Ramat Gan, 5290002, Israel 
b Department of Information Systems, College of Law & Business, Ramat-Gan, P.O.Box 852 Bnei 
Brak 5110801, Israel 

 
 

 
Materials informatics is rapidly developing as evidenced by the large increase in the number 

of publications in this field. This development is fueled by the continuous growth of available data, 
both experimental and computational, on one hand and by the ability to draw from the rich repertoire 
of methods in its sister field, chemoinformatics, on the other. Similar to chemoinformatics, materials 
informatics can help bridge the so-called data-knowledge gap by offering smart ways to navigate the 
enormous materials space in search of new materials with favorable properties.  

A key computational technique in materials informatics is Machine Learning (ML). In this talk, 
we will therefore comparatively analyze the similarities and differences between materials 
informatics and cheminformatics, within the framework of what is required to derive reliable ML-
based models.  

Next we will focus on the application of ML methods to the study of solar cells. Such cells 
hold the potential to meet the growing worldwide demand for clean energy. Today most solar cells 
are based on silicon yet new alternatives are continuously emerging including organic photovoltaic 
cells, dye sensitized solar cells (DSSCs), and metal-oxide (MO)-based solar cells. However despite 
significant progress, all these cells could benefit from improvements in key components, e.g., the 
dye in DSSCs and the MO composition of MO-based solar cells. Thus, we will present how the 
concept of pharmacophore can help identify new dyes with favorable (predicted) electronic 
properties for DSSCs and how combining combinatorial materials sciences with ML can lead to 
predictive models for key solar cells parameters such as current, voltage and quantum efficiency. 

Finally, we will shift our attention to the field of forensic informatics and in particular to the 
usage of ML in order to analyze physical evidence found in crime scenes. This work will highlight the 
usefulness of experimentally determined spectra, in particular such that reflect the elemental 
composition of such evidence. In particular, we will describe the development of a reliable of ML-
based classifier from glass fragments retrieved from different types of car windshields using ion 
beam analysis. 

As a final take home message, we emphasize the need to conduct research in the field of 
materials informatics in close collaboration with experimentalists in order to provide insight into the 
observed trends and to capitalize on the results. 
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[L8] Approaches to Next Generation Pharmacophore Modelling 
 

Thierry LANGER 

 

Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, University of Vienna, 
Althanstrasse 14, 1090 Vienna, Austria 

 

 

Chemical feature based 3D pharmacophore models have been used for several decades 
supporting medicinal chemists in their early drug discovery programs. (1) In this presentation, an 
overview on recent approaches in further developing the field of pharmacophore modeling is given. 

At Inte:Ligand GmbH, we developed the program LigandScout (2) as an integrated software 
solution containing rapid and efficient tools for automatic interpretation of ligand-protein interactions 
and subsequent transformation of this information into 3D chemical feature-based pharmacophore 
models. In addition, pattern recognition-based algorithms were developed for ligand-based 
pharmacophore modeling in the absence of a target 3D structure, as well as for establishing a novel 
and accurate virtual technique.  

Since recently, we study the possibility to transfer the pharmacophore concept from a static 
approach to a dynamic one, by analyzing molecular dynamics simulation trajectories, in order to 
develop pharmacophore ensembles representing the dynamic event of binding (3) and to analyze 
them using both grid-based probability functions (4) as well as hierarchical graphs. (5) First results 
obtained from frequency information are indicating that MD simulations can add significantly to the 
refinement such models, by guiding the user to add or remove pharmacophore features, depending 
on their stability during the simulation and use them to increase prediction power in virtual screening. 
(6) Machine learning has been utilized to transform qualitative pharmacophore models to quantitative 
ones. (7) 

Finally, as an extension of this approach, parallel pharmacophore-based screening has been 
introduced as an innovative in silico method to predict the potential biological activities of compounds 
by screening them with a multitude of pharmacophore models, e.g. in order to predict molecular 
initiating events finally leading to neurotoxic outcomes. We recently have made available this 
approach as a LigandScout Extension Workflow Node within the NeuroDeRisk KNIME platform. (8,9) 

 
 
 

Bibliography: 
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[L9] Explainable artificial intelligence:  
evolution, achievements and perspectives 

 
Pavel POLISHCHUK 

 
Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky 
University, Hnevotinska 5, 77900, Olomouc, Czech Republic 
 
 

From the very beginning QSAR models followed human intuition. They used clearly 
interpretable descriptors and simple methods to establish structure-activity relationships. This made 
these models transparent and easy to understand for researchers. Information retrieved from such 
models could help to understand the underlying mechanisms or could be used to guide further design 
steps of compounds with improved properties. Further development of QSAR models was focused 
on improvement of their predictive ability that was successfully achieved by introduction of novel 
descriptors and machine learning methods. That made the resulting models more obscure due to 
their very complex internal structure or using non-interpretable descriptors. These models started to 
be considered as “black boxes” and a popular belief appeared that a trade-off between predictivity 
and explainability of models exists. This was true to some extent until the development of 
interpretation approaches which could estimate contributions of atoms or fragments directly from 
models. In theory, these approaches are applicable to any kind of predictive models that makes all 
such models interpretable. 

More recently, neural networks gained much attention and wide applicability in many fields 
including chemoinformatic. These models are used to predict properties of molecules, reaction 
outcomes and optimal conditions, generate new chemical entities with desired properties, etc. Due 
to the high complexity of neural networks they could capture hidden biases in datasets or spurious 
correlations that lower the credibility in them. Therefore, the interest in interpretation of neural 
networks arose greatly last years. Multiple approaches were suggested and many of them were 
adapted in chemoinformatics. Some of them are model-specific, others have a wider applicability. 
The large number of these approaches makes it difficult to choose a proper method for interpretation 
of a particular model. Therefore, certain steps were performed to create specific data sets to 
benchmark existing and developing approaches. It was demonstrated that not all interpretation 
approaches were able to retrieve proper structure-activity relationships and their careful investigation 
is required. However, approaches which were developed previously are also applicable to explain 
decisions of neural network models. 

Despite of all successes in explainability of complex machine learning models the 
interpretation is still in infancy and not widely used in research work. However, it may provide great 
advantages and feedback for specialist beyond the chemoinformatic field. Therefore, integration of 
these approaches in research pipelines and their active use for making decisions can be considered 
as a major challenge for explainable artificial intelligence in the near future. 
 
This work was funded by the INTER-EXCELLENCE LTARF18013 project (MEYS), the European 
Regional Development Fund - Project ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868), ELIXIR 
CZ research infrastructure project (MEYS Grant No: LM2018131). 
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[L10] AI for Drug Design an Industrial Perspective 
r 

Ola ENGKVIST 
 

Discovery Sciences, R&D, AstraZeneca Gothenburg, Sweden 
 

 
Artificial Intelligence has become impactful during the last few years in chemistry and the life 

sciences, pushing the scientific boundaries forward as exemplified by the recent success of 
AlphaFold2. In this lecture I will provide an overview of how AI have impacted drug design in the last 
few years, where we are now and what progress we can reasonably expect in the coming years. 
There will be an emphasis on how AI for drug design is applied in the industry. The presentation will 
have a focus on deep learning based molecular de novo design, however, also aspects of synthesis 
prediction, molecular property predictions and chemistry automation will be covered.  
 
  



22 
 

[L11] Cheminformatics in Natural Product-based Drug Discovery  
 

Johannes KIRCHMAIR 
 

Computational Drug Discovery and Design Group (COMP3D), Department of Pharmaceutical 
Sciences, Division of Pharmaceutical Chemistry of the University of Vienna, Austria 

 
 
Natural products (NPs) remain the most prolific resource of inspiration for small-molecule 

drug discovery. Computational methods can make a substantial contribution to NP research and the 
design of NP-inspired drugs. This lecture aims to provide an overview of the scope and limitations 
of modern cheminformatics methods for NP research, such as approaches for virtual screening, 
target prediction, ADME/T prediction and many other applications. Further to that, we will present 
our latest works on the (i) assessment of the NP chemical space and its relevance to drug discovery, 
(ii) analysis of NP ring systems and their representation by synthetic compounds, and (iii) target 
prediction for structurally complex NPs. 
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A broad range of computational approaches collectively called “epi-informatics” are 

increasingly used to advance epigenetic drug and probe discovery. Herein, we discuss the recent 
advances in epi-informatics to chart the epigenetic relevant space and guide the development of 
targeted libraries. We also discuss the applications of computational approaches to guide the 
identification of small molecules active against one or more epigenetic targets. In particular, we will 
cover current trends of machine learning models generated based on sizeable public compound 
databases annotated with biological activity and implemented in a free webserver. As a case study, 
we will present the identification of potent and dual inhibitors of DNA and histone methyltransferases. 
In addition to showing low micromolar enzymatic inhibition, the small molecules are also active in 
various cell lines. The hit compounds were identified from synthetic screening libraries focused on 
epigenetic targets after an exhaustive analysis of the diversity and coverage of the chemical space. 
Computational approaches helped to rationalize the activity at the molecular level. 
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 [L13] Deep Docking – the AI-enabled Platform for Advanced Virtual 
Screening 

 
Artem CHERKASOV 

 
Vancouver Prostate Centre, Faculty of Medicine, University of British Columbia 
 
 

With the recent explosion of chemical libraries beyond billion molecules, more efficient virtual 
screening approaches are needed. The Deep Docking (DD) platform enables up to hundred-fold 
acceleration of structure-based virtual screening by docking only a subset of a chemical library, 
iteratively synchronized with a ligand-based prediction of the remaining docking scores. This method 
results in hundreds-to-thousands fold virtual hit enrichment (without significant loss of potential drug 
candidates) and hence, enables screening billion-sized chemical libraries without using 
extraordinary computational resources. Herein we present the generalized DD protocol that has 
been proven successful in a variety of computer-aided drug discovery (CADD) campaigns and can 
be applied in conjunction with any conventional docking program. 
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For over a decade, computational chemical biology has contributed to a wide array of 
scientific tasks from analytical chemistry and biochemistry to pharmacology and toxicology. With the 
increasing availability of data from the”omics” technologies, we start to be able to profile chemical 
effect, not only at the molecular level, but also at more complex layers (cells, tissues, organs) 
allowing a better understanding of the mechanism of action underlying complex diseases. 

Recently, phenotypic drug discovery has re-emerged as promising approaches in the 
identification and development of novel and safe drugs. Although, phenotypic screening does not 
rely on knowledge of specific drug targets, combination of chemical biology data with network 
sciences and cheminformatics give the opportunity to suggest therapeutic targets and mechanisms 
of actions induced by drugs and associated with an observable phenotype. 

In our laboratory, we have developed a system pharmacology network integrating chemicals-
proteins/genes-pathway-disease relationships and high content imaging-based high-throughput 
phenotypic profiling assays.  

First, I will present the implementation of this system pharmacology network and then I will 
go through different examples showing how such analysis might be of interest in the study of 
chemical action across multiple scales of complexity from molecular and cellular to phenotypes and 
diseases.  
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Small-Molecule Drug discovery is a multi-objective optimization problem in which finding the 

next drug candidate depends on various characteristics of compounds including efficacy, 
pharmacokinetics and safety. In the design process of small molecule drugs, medicinal chemistry 
project teams routinely face this complex multidimensional optimization challenge. Given the 
massive size of the relevant “chemical space” (estimated to be in the range of up to 1060 drug-like 
molecules), the key question for medicinal chemists is “What is the best compound to make and test 
next”'. While humans are extremely good in understanding the bigger picture, computers/algorithms 
are potentially much better in coming up with and evaluating a large body of 
complementary solutions – such as the described multidimensional optimization problem.  
  

In this session, the concept of Generative Chemistry and how it approaches the above-
mentioned optimization problem will be introduced based on a Novartis in-house initiative. Examples 
from medicinal chemistry project applications will be provided to highlight how such 
an in silico decision-support system can assists medicinal chemists in multi-objective compound 
design, selection and prioritization.  
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[SC1] Why Everybody Talks About Chemical Space Exploration  
Marcus GASTREICH 
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Until a few years ago, and besides corporate compound repositories of merely a few million 
compounds, companies screened the same idea pool for IP novelty: eMolecules, ZINC, the Enamine 
catalog and the like. This, for obvious reasons, not only limits the IP space from which to mine but it 
hampers knowledge gaining due to the duplication character of the “novelty” sources.  
Since very few years,1 both companies and even academic institutions therefore mine from new, 
incredibly large spaces, sometimes with enormous computational effort.2 The talk shall briefly shed 
light on the strategic reasons behind this paradigmatic change in the field.  
 

Dating back to collaborations with Roche,3 Boehringer Ingelheim,4 Pfizer,5 and several other 
Big Pharma organizations, BioSolveIT has created infrastructures that allow searching these vast 

spaces — the counts of which sometimes even exceeds zetta ranges [1021]. Such numbers cannot 
be accesses with traditional, enumeration-based methods and needs an exploitation of 
combinatorics.  
 

With a focus on didactics, the talk shall provide a “feeling” for the sizes and today’s breadth 
of approaches,6 with an emphasis on the application side, rather than of going into details of the 
technical implementations ideas of which largely root in academic collaborations by the Rarey Lab 
in Hamburg.  
Please note that Matthias Rarey will also provide a lecture at this school.   
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On-demand synthesizable screening libraries have been growing very rapidly in the recent 
years to reach several tens billions of compounds. Exploring such large and diverse chemicals 
spaces in screenings would enable the discovery of more-potent hits and new scaffolds. But applying 
physics-based virtual screening methods in an exhaustive manner on such big libraries would be 
cost-prohibitive. 

 
Here, we introduce a protocol1,2 for machine learning-enhanced molecular docking based on 

active learning to dramatically increase throughput over traditional docking. We will see how such 
approach enables the identification of the best scoring compounds and the exploration of a large 
region of chemical space. Together with automated redocking of the top compounds, this method 
captures almost all the high scoring scaffolds in the library found by exhaustive docking.  

 
The performances of this protocol were assessed on virtual screening campaigns, and we 

observed it can produce several highly potent, novel inhibitors at a reduced computational cost but 
preserving the diversity of the experimentally confirmed hit compounds. 
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Peptides are a class of drugs in a growing therapeutic space between small molecules and 
biologics. More than 80 peptide drugs have reached the market for a wide range of diseases, 
including diabetes, cancer, osteoporosis, multiple sclerosis, HIV infection and chronic pain1.  
Predicting peptide properties using machine learning methods has gained interest in recent years, 
with a particular focus on anticancer2, antimicrobial3 or improving permeability4 properties, using 
publicly available datasets.  
 Since 2018, multiple generative AI approaches for peptides have also been proposed. 
Methods include three popular deep generative model frameworks: neural language models (NLMs), 
variational autoencoders (VAEs), and generative adversarial networks (GANs)5. 
These predictive and generative approaches have shown interesting performances, but also 
limitations, especially on the type of amino acids considered, most often restricted to natural amino 
acids. 
 In this work, we have developed new representations of peptides, including graph 
representations at the amino-acid, backbone - side chain and pharmacophore level. These 
representations are suitable for peptides constituted of natural residues, but also for complex 
peptides which contain modified amino acids and cross-links. We applied a circular algorithm to 
transform these graphs into a vectorial representation and evaluated them for predictive tasks, 
including permeability. Finally, we proposed generative models based on the new representations 
proposed here, able to design new peptides with optimized properties.  
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In recent years, in silico molecular design is regaining interest. To generate on a computer 
molecules with optimized properties, scoring functions can be coupled with a molecular generator to 
design novel molecules with a desired property profile. In this poster, a simple method is described 
to generate only valid molecules at high frequency (>300000 molecule/s using a single CPU core; 
Figure 1), given a molecular training set. The proposed method generates diverse SMILES (or 
DeepSMILES) encoded molecules while also showing some propensity at training set distribution 
matching. When working with DeepSMILES, the method reaches peak performance (>340000 
molecule/s) because it relies almost exclusively on string operations. The “Fast Assembly of SMILES 
Fragments” software is released as open-source at https://github.com/UnixJunkie/FASMIFRA.  

Experiments regarding speed, training set distribution matching, molecular diversity and 
benchmark against several other methods are also shown. 
 
 

 
Figure 1: Model training (left) and sampling speed (right). RNN: Recurrent Neural Network (numbers cited from literature [2]); Frag (train): 
molecular fragmentation (Python/RDKit); Tag: tagging cleaved bond (proposed method, Python/RDKit); Frag (sampling): assembly of 
molecular fragments using molecular graph operations (Python/RDKit); Smi: fast assembly of SMILES fragments (proposed method, 
OCaml). Dsmi: fast assembly of DeepSMILES fragments (proposed method, OCaml); Tag is the model training prerequisite of Smi and 
Dsmi sampling. All methods use a single CPU, except RNN which uses four CPUs and one GPU. 

 
 
 
Bibliography:  
 
[1] Berenger, F., & Tsuda, K. (2021). Molecular generation by Fast Assembly of (Deep) SMILES fragments. 
Journal of Cheminformatics, 13(1), 1-10. 
[2] Arús-Pous, J., Blaschke, T., Ulander, S., Reymond, J. L., Chen, H., & Engkvist, O. (2019). Exploring the 
GDB-13 chemical space using deep generative models. Journal of cheminformatics, 11(1), 1-14. 

 
  

https://github.com/UnixJunkie/FASMIFRA


32 
 

[SC5] ML prediction of C-H bond energies: calibration of DFT-based 
models with experimental data 

 

Wanli LI, Yue LUAN, Qingyou ZHANG1*, Joao AIRES-DE-SOUSA2* 
 
1 Henan Engineering Research Center of Industrial Circulating Water Treatment, Henan Joint 
International Research Laboratory of environmental pollution control materials, Henan University, 
Kaifeng, 475004, PR China; qingyou@vip.henu.edu.cn 
2 LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, 
Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; jas@fct.unl.pt 
 

 

Random Forest QSPR models were developed with a data set of homolytic bond dissociation 
energies previously calculated by B3LYP/6-311++G(d,p)//DFTB for 2263 C-H covalent bonds 
between hydrogen and sp3 carbon atoms [1]. The bonds were represented by atomic descriptors of 
the carbon atom – counts of 34 atom types (specified by the element and number of H neighbors) in 
spheres around the atom, and sizes of rings incorporating the atom. The best set of atomic attributes 
consisted in 114 ring descriptors and counts of atom types in 5 spheres around the kernel atom. The 
optimized model predicted the bond energies of an independent test set of 224 bonds with R2=0.85, 
MAE=2.86 kcal/mol and RMS=4.57 kcal/mol. A new data set of 409 bonds from the ibond database 
[2] was predicted by the RF and compared with the experimental energies [3]. A modest MAE (5.36 
kcal/mol) but a relatively high R2 (0.74) suggested a systematic deviation. A prediction scheme was 
thus explored that corrects the RF prediction with the average deviation observed for the k nearest 
neighbors in an additional memory of experimental data. The corrected predictions achieved 
R2=0.87, MAE=2.22 kcal/mol and RMS=2.94 kcal/mol in experiments with an independent test set 
of 145 bonds and the corresponding experimental bond energies. Such a protocol relied on RF 
similarities for the definition of the KNN distance between objects, and performed better than a KNN-
only prediction. 
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Molecular visualization is a critical task usually performed by structural biologists and 

bioinformaticians to aid three processes that are essential in science and fundamental to 
understand structural molecular biology: synthesis, analysis and communication [1].  
Here we present VTX, a new molecular visualization software that includes a real-time high-
performance molecular graphics engine dedicated to the visualization of large structure and 
dynamics of molecular systems. It is capable to process most molecular structures and 
trajectories file formats. VTX disposes of an interactive camera system controllable via the 
keyboard and/or mouse that includes different modes: 1. a classical trackball mode where 
the cam-era revolves around a fixed focus point and 2. a first-person free-fly navigation 
mode where the user fully controls the movement of the camera. VTX includes an intuitive 
and highly usable graphical user interface and tools designed for expert and non-expert 
users. It is free for non-commercial use at http://vtx.drugdesign.fr 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Illustration of VTX Image export of a black and white flat color SAS of human haemoglobin (PDB ID:1A3N).  
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Nowadays, drug discovery is inevitably intertwined with the usage of large compound collections. 
Understanding of their chemotype composition and physicochemical property profiles is of the 
highest importance for successful hit identification. However, the development of efficient 
polyfunctional tools allowing multi-faceted analysis of the constantly growing chemical libraries is 
complicated by the Big Data challenges.  

Thus, we present ChemSpace Atlas (https://infochm.chimie.unistra.fr/) - an intuitive polyvalent 
tool for the ultra-large chemical space exploration and analysis with respect to medicinal chemistry 
problems. Being based on the hierarchical ensemble of tens of thousands of Generative 
Topographic Maps(GTM)[1], it provides access to ChEMBL, ZINC and COCONUT collections 
allowing easy navigation through the hundreds of millions of compounds from a global bird’s eye 
view to structural pattern detection[2]. ChemSpace Atlas functionality is not limited to a simple 
visualization of the similarity relationships in the chemical space but it also allows users to analyze 
physicochemical properties and biological activities, perform polypharmacological profiling (around 
750 biological activities), analogs search, and detailed structural analysis with the help of MCSs and 
scaffolds. In Figure 1 one can see the example of the activity visualization page for CDK4 
(CHEMBL331) ligand series from ChEMBL. 

 

 
Figure 1. Activity visualization page of the ChEMBL activity space Navigator on the example of CDK4 (CHEMBL331) ligands. 1) navigation 
bar; 2) target selection menu; 3) legend of the map; 4) interactive activity landscape; 5) zone population information (if green, bars become 
clickable and corresponding compounds can be displayed); 7) button for downloading compounds from the selected area of the chemical 
space; 8) direct links to the source database (here ChEMBL). 
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The project COVID.SI has been running since March 2020. As the name suggests, the main 
goal of the project is to find compounds that are complementary to receptor targets associated with 
COVID -19 disease pathology. The core of our project is the virtual screening (docking) of ten million 
purchasable compounds against drug targets using distributed computing. We use an in-house 
developed server-client solution (https://github.com/ COVID -si). The server programme, written in 
Javascript, is incredibly robust and extensible, and node cloning should not cause any problems. 
Clients are available for Linux, macOS and Windows. The docking software used is CmDock 
(https://gitlab.com/Jukic/cmdock), a fork of RxDock, a fast, versatile, and open-source programme 
for docking ligands to proteins and nucleic acids. 

 
To date, we have tested 10 million compounds against various targets, mainly related to 

COVID. Some of the results from our virtual screening campaign are already being used to prioritise 
compounds for 3CLpro inhibitor development [1]. The COVID.SI project also has a Boinc-based 
sister project, SIDOCK@HOME, developed with colleagues in Petropavlovsk, Russia. It is designed 
to screen billions of compounds for pharmacologically important biomolecular targets, which today 
are primarily associated with COVID -19. [2]  

 
Our goal is to expand the project to other important targets associated with other dangerous 

virus-borne diseases such as Ebola, Zika, Nipah, and the parasitic diseases malaria and 
trypanosomiasis. 
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In medicinal chemistry, a pharmacophore denominates a spatial arrangement of chemical 

features which is responsible for a favorable interaction with the binding site of the target. We have 
recently designed a method that automatically computes pharmacophores from a large data set of 
molecules without any prior supervised selection of a small subset of molecules [1, 2]. The 
connections between the computed pharmacophores provide a hierarchical organization: the 
pharmacophore network. The latter is structured by the pharmacophores’ size and contains a large 
number of them. The current work aims at developing a structure which a medicinal chemist can use 
to support his analysis without having to repeatedly mine pharmacophores. For this purpose, we 
enhance the knowledge on the pharmacophore network organization by taking into account parent-
children relations and/or grouping the pharmacophores into equivalence classes, i.e. sets of 
pharmacophores occurring in the exact same molecule group. Additionally, each pharmacophore is 
annotated with one or several quality measures (e.g. confidence or growth rate measurements), 
information that will be exploited later-on.  

The directed acyclic graph (DAG) is built and organized in layers which contain 
pharmacophores with the same number of pharmacophoric features, as well as the molecules that 
respond to them. Layers are linked by establishing parent-children relationships based on a sub-
graph relationship. The DAG can then be used to apply different filtering and selection algorithms, 
e.g. based on user-specified quality measures, the visualization of the effect on each layer. In order 
not to overwhelm the expert, the visualization is condensed by clustering nodes in each layer using 
the above-mentioned equivalence classes. We will also use the DAG to identify Pharmacophore 
Activity Delta (PAD). PADs are syntactic pharmacophores families, i.e. pharmacophores linked via 
the afore-mentioned parent-child relationships exhibiting a minimum amount of syntactic similarity, 
yet members of which show a significant difference between the values of their quality measures.  
Interactive Pattern Mining [3] is one of the objective of this work related to ANR project InvolvD (ANR-
20-CE23-0023, https://involvd.greyc.fr/). This DAG was used to simulate the effects of users or 
functions interacting with the search space during the search itself.  
The DAG process was applied to BCR-ABL chemogenomic dataset (ChEMBL1862, ChEMBL_24). 
The BCR-ABL tyrosine kinase is an oncogene associated to chronic myeloid leukemia. We aim to 
expose our method and how far the PAD analysis highlighted original chemical structural features 
linked to active or inactive ligands.   

 
Figure: From a chemical database to the highlight of structural features of interest, we aim to present how our pharmacophore DAG can 
be used for fast 2D structural discrimination. 
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Deep Neural Network (DNN) models have become a popular machine learning technique for 
toxicity prediction of chemicals. Due to their complex structure it is difficult to understand predictions 
made by these models which limits confidence. Current approaches to tackle this problem such as 
SHAP or integrated gradients provide insights by attributing importance to input features of individual 
compounds.1,2 While these methods have produced promising results, they do not shed light on 
representations of compounds in hidden layers. In the realm of image classification models, feature 
visualization has been developed as a tool to depict features learned in specific hidden layer 
neurons.3 Detecting complex chemical features learned in hidden layers might complement current 
approaches for interpreting DNN models used for toxicity prediction.  

The present study focuses on feedforward neural networks with RDKit’s Morgan fingerprints 
as input. A novel method was developed to automatically extract chemical features responsible for 
activation of hidden neurons. This method leverages both information about training compounds 
strongly activating hidden neurons and learned model parameters. Using Ames mutagenicity as a 
well-understood toxicity endpoint, the method was able to extract known toxicophores. Moreover, 
extracted substructures can be mapped onto test compounds to obtain model explanations 
incorporating hidden layer representations of compounds. Using toxicophores from the Derek expert 
system4 as ground truth, the explanatory capability of the approach was evaluated using attribution 
AUCs as metric.5 For the majority of compounds provided explanations match the ground truth very 
well with AUC values above 0.8. 

The proposed method may be used to extract novel toxicophores by leveraging chemical 
features encoded in DNN models. Furthermore, understanding of model predictions is increased by 
providing explanations complementary to those obtained with established attribution methods. While 
not explored in the present study, the proposed method could be adapted to other DNN architectures 
such as graph-convolutional neural networks. 
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One of the new trends in the generation of chemical structures is the use of graph-based 
neural networks[1]. Here we present a novel open-source autoencoder architecture, HyFactor[2]. This 
network operates with a hydrogen-count labelled graph (HLG), where the number of hydrogens 
attached to heavy atoms is used instead of bond types ( 

 

Figure 2). HyFactor was benchmarked on the ZINC 250K, MOSES and ChEMBL data sets, 
against the conventional graph-based architecture ReFactor. The latter represents our 
implementation of the DEFactor architecture[3]. In average, HyFactor models contain some 20% less 
training parameters than required by ReFactor. Both ReFactor and HyFactor showed high (>90%) 
reconstruction rates both in ZINC250K and ChEMBL datasets, which is similar (or even better) than 
earlier reported graph-based or SMILES-based approaches. The two architectures display similar 
validity and uniqueness in the molecular generation task. Compared to the training set compounds, 
HyFactor generates more similar structures than ReFactor. This could be explained by the fact the 
latter generates many open-chain analogues of cyclic structures in the training set. It has been 
demonstrated that the reconstruction error of heavy molecules can be significantly reduced using 
the data augmentation technique. The code of HyFactor and ReFactor as well as all models 
obtained in this study are publicly available from our GitHub repository: 
https://github.com/Laboratoire-de-Chemoinformatique/HyFactor 
 
 

 
 
 
Figure 2. The concept of HyFactor graph-based autoencoder. Here, the hydrogen-labelled graph is translated into a vector representation 
and back using HyFactor. The new molecular structure is generated by sampling latent vector in the vicinity of the molecule. 
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Angiotensin-converting enzyme 2 (ACE2) is a key element of the blood pressure regulation 
mechanism but also turns out to mediate SARS-CoV-2 cellular entry and infection. 

The aim of this work is to predict in silico selective ACE2 binders. Experimentally confirmed 
hits may act as chemical probes for SARS-CoV-2 side effects investigation, to distinguish which 
COVID-19 symptoms may be directly related to perturbed ACE2 activity.  

We built a QSAR classification model and performed pharmacophore modelling for ACE2 
receptor binding. Models for related targets angiotensin-converting enzyme (ACE) and neprilysin 
(NEP) were also developed and used to assess ACE2 selectivity of virtual hits. Experimental data 
extracted from ChEMBL and PubChem, and provided by Enamine (for ACE-2) were used as a 
training set. In addition, structure-based pharmacophore model has been developed with the 
LigandScout program. The developed models were used to screen both Enamine in-stock collection 
(2.6M compounds) and virtual library generated with the Synt-On1 tool (4080 compounds). Virtual 
hits predicted by QSAR and pharmacophore models were docked with PLANTES into the ACE2 
active site and ranked according to the docking score. A set of 39 potential selective ACE2 binders 
has been submitted for the experimental validation.  
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 Over the past decades, fragment-based screening (FBS) has been recognized as an efficient 
alternative to the conventional high-throughput screening (HTS).1 FBS methods are focused on a 
relatively small chemical collections composed of small yet diverse organic compounds, called 
fragment-like compounds. 
 In this study, we have developed a classification quantitative structure-property relationship 
(QSPR) model that predicts fragment solubility in dimethyl sulfoxide (DMSO).2 This solvent is 
commonly used in screening methods. Therefore, preliminary assessment of solubility of fragments 
in DMSO is beneficial, saving material and human resources. The categorical threshold for solubility 
classification was set to 1 mM, which is a common FBS sample concentration. The predictive model 
is freely accessible on the Predictor web-server of the Laboratory of Chemoinformatics.3 

 
 

 
 
 
 

Bibliography: 
 
[1] Kirsch, P.; Hartman, A. M.; Hirsch, A. K. H.; Empting, M. Concepts and Core Principles of Fragment-
Based Drug Design. Molecules (2019), 24 (23), 4309. 
[2] Baybekov, S.; Marcou, G.; Ramos, P.; Saurel, O.; Galzi, J.-L.; Varnek, A. DMSO Solubility Assessment 
for Fragment-Based Screening. Molecules (2021), 26 (13). 
[3] Laboratory of Chemoinformatics - Online tools http://infochim.u-strasbg.fr/cgi-bin/predictor2.cgi (accessed 
2022 -04 -21). 

 

 
  

http://infochim.u-strasbg.fr/cgi-bin/predictor2.cgi


43 
 

 [P4] Harnessing the “creativity” of AI to generate novel chemical 
reactions 

 
William BORT1, Igor I. BASKIN1,2,4, Timur GIMADIEV3, Artem MUKANOV2, Ramil NUGMANOV2, 

Pavel SIDOROV3, Gilles MARCOU1, Dragos HORVATH1, Olga KLIMCHUK1, Timur MADZHIDOV2, 
Alexandre VARNEK1,3 

 
1 Laboratory of Chemoinformatics, UMR 7140 CNRS, University of Strasbourg, 1, rue Blaise Pascal, 
67000 Strasbourg, France. 
2 Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan 
Federal University, Kremlyovskaya str. 18, 420008 Kazan, Russia. 
3 Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 
Nishi 10, Kita-ku, Sapporo 001-0021, Japan. 
4 Department of Materials Science and Engineering, Technion – Israel Institute of Technology, 
3200003 Haifa, Israel  
 

 
In this study, we investigate the creativity of AI to discover novel types of chemical 

transformations. For this purpose, a combination of autoencoder with chemical space cartography 
was used. A classical sequence-to-sequence autoencoder with bidirectional Long Short-Term 
Memory layers was trained on specially developed “SMILES/CGR” strings, encoding chemical 
transformations from the USPTO database. Generative Topographic Mapping (GTM) was used to 
visualize the latent space of chemical reactions. New latent vectors were sampled from the GTM 
area populated by Suzuki coupling reactions followed by decoding to corresponding reaction 
equations. An automatic detection of novel transformations was set up by analyzing reaction centers 
specifically. Reaction feasibility analysis was performed on the basis of reaction heats calculated 
with the DFT method. Among generated reactions, we identified 12 transformations absent in the 
training set, 5 of which were then found in recent publications. 
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More than half of all modern small-molecule drugs are related, to some extent, to natural 

products (NPs) [1]. Much of the significance of NPs can be attributed to their ring systems, which 
form the structural core of many drugs. However, despite the importance of NP ring systems, the 
understanding of their structural properties and how the full potential of NP ring systems can be 
harnessed in drug discovery are still limited.  

This contribution will present a comprehensive cheminformatic analysis of more than 35,000 
NP ring systems with regard to their structural and physicochemical properties, and compare them 
with those of ring systems found in readily purchasable, synthetic compounds and approved drugs. 
The data sets were carefully curated to obtain clean collections of NPs and synthetic compounds. In 
addition to key 2D physicochemical properties such as molecular weight and logP, 3D shape and 
electrostatic properties were explored.  

Stereochemistry is important, in particular to NP research, as it contributes substantially to 
the structural complexity and biological activities of compounds. However, stereochemical 
information is often incomplete and sometimes even wrong [2]. Therefore, most cheminformatics 
studies disregard stereochemical information. To maximize the usage of the available chemical 
information we elaborated an evidence-based approach to utilize the stereochemical information 
whenever it adds value and the data situation permits.   

This study shows that approximately one in two NP ring systems are represented by ring 
systems found in synthetic compounds that have identical or related 3D shape and electrostatic 
properties. Meanwhile, only about 2% of the NP ring systems are observed in approved drugs, 
leaving a large number of ring systems to be explored in small-molecule drug discovery.  
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The G-protein coupled receptor family is responsible for signaling transduction in many 
biological processes. The binding of a ligand regulates the signaling by stimulating it (agonist) or 
inhibiting it (antagonist, inverse agonist). The β2 adrenergic receptor (ADRB2) is one of the most 
studied GPCR, with many known ligands with an agonistic or antagonistic action. 

The ligand binding information provided by crystallographic structures of ADRB2 is often 
used to improve virtual screening performance, by allowing better separation not only of active and 
inactive ligands, but also of agonists and antagonists [1][2]. Here, we propose a method that takes 
into account the conformational dynamics of the ADRB2/ligand reference complex with the aim of 
improving the biased search towards ligands with specific pharmacological properties. 

An ensemble of binding poses was obtained from the crystal structure of ADRB2-agonist 
complex using molecular dynamics (MD) simulations [3][4]. Key interaction-patterns for agonist 
activity were selected by a machine learning algorithm. As a test, the developed model was used, in 
combination with protein-ligand docking, to screen a small library containing well-characterized 
agonists and antagonists targeting ADRB2. 

The proposed technique could be used to post-process docking poses to determine if they 
can be considered as agonist-like. It can be applied as a filter to remove non relevant poses, non-
active ligands, and ligands with an undesired pharmacological effect. 
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Cytochromes P450 (CYPs) constitute a large family of ubiquitous hemoproteins involved in 
drug metabolism in mammals and many biosynthesis pathways in all living organisms where 
monoxygenase activity is required. CYP3A4 isoform is the main human metabolizer in liver, and as 
a multidrug enzyme, it remarkably recognizes a broad spectrum of molecules sharing no common 
molecular motif. This multispecificity is not yet understood, although it seems clear that ligand 
recognition occurs not only in the active site, but also during its route through specific ingress 
channels. A channel is defined as a ligand accessible pathway leading from the protein surface to 
the buried heminic cavity. In a previous study we gave evidence that CYP3A4 exhibits 4 major drug 
access channels with different structural features. In this work, we investigated the relationships 
between the nature of CYP3A4 ligands and the potential pathway they follow to reach the active site.  

CYP3A4 presents to date 77 crystallographic structures released in PDB, apo and complexed 
with various ligands. This remarkable dataset allows comparing the various conformational states of 
the ligand-bound enzyme, and the binding mode of 71 drugs. By comprehensive scrutiny of the co-
crystal structures, we found that the enzyme exhibits 3 main conformations [2] allowing the opening 
of 4 main channels [3] identified by geometrical calculation [1]. In our interpretation, channel plasticity 
allows the geometric (shape and size) and electronic (physico-chemical) selection for different 
classes of drugs. In this mechanism, the ligand-channel interaction leads to a specific deformation 
of the CYP3A4 structure associated to the position of key loop F-G, and drives the selection of one 
of the three conformational states for admission of the substrate. A first diagram predicting these 
access openings was proposed [2] that proved to be consistent with all known crystal structures in 
2017.  

In a subsequent study we used these data to perform a machine learning validation of the 
structural study, in order to propose a predictive model of CYP3A4 multi-drug recognition. We took 
advantage of about twenty new crystallographic structures of the protein to improve our model 
enriched with the new set of ligands. We built a Classification and regression Tree model, using 
cross-validation, to predict the 3A4 channeling selectivity and understand how the 3A4 opens 
specific channels to given ligands. We aim to propose a relevant 3A4 predictive conformation model 
which sheds light on the relationship between the ubiquitousity (diversity of substrates) and the 
plasticity of the channels of an isoform. Preliminary results on new data are promising and should 
contribute to a better understanding of substrate recognition and anticipation inhibition or metabolism 
by CYP3A4. 
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Approximately 90% of the drugs fail during clinical studies, which makes the drug 
development process complex, expensive, and time-consuming [1]. The main reason for the majority 
of drug failures is a lack of efficacy and toxicity[2], [3].  Even though the effort to improve the 
predicting the performance of safety and toxicity for the drug candidate is increased over time using 
preclinical and post-clinical data[3], [4], drug approval become more costly and challenging[5]. 
Therefore, high-quality clinical and approved drug data, which are integrated with a knowledge 
graph, are required to help the effort in predicting potential off-targets, primary and secondary targets 
combing with therapeutic information for active pharmaceutical ingredients (APIs) to improve their 
profiles. 

Here, we present DrugMapper, the successor of IDAAPM[6], which is released in 2016. 
IDAAPM focused on integrating FDA-approved drugs and their available information. Similarly, 
DrugMapper is a web-based platform and drug discovery database that provides clinical candidates 
and approved drugs and integrates detailed information such as clinical phase studies, FDA-
approved application data, mechanism of action, therapeutic indication, structure, molecular 
descriptors, biological activities, targets, human metabolites, ADMET, and adverse effects. Further, 
this resource is embedded with interactive knowledge graphs to navigate chemically similar APIs 
and their pharmacogenomics and pharmacology data. This provides a great advantage to 
understanding pharmaceutical attrition on APIs during the clinical phase, a new mechanism of action 
for approved drugs, new treatment, and identifying off-targets in drug discovery. In addition, it allows 
users better understand the evolution of approved drugs using the chemical scaffold associated with 
the chemical space in DrugMapper, predicting potential primary and secondary targets, and further 
building a predictive model for a new target for APIs, ADMET, and adverse effects. DrugMapper is 
integrated with KNIME[7], free and open-source data analytics, and an integration platform.  
 
 
 
Bibliography:  
 
[1] D. Sun, W. Gao, H. Hu, and S. Zhou, “Why 90% of clinical drug development fails and how to improve it?,” 
Acta Pharm. Sin. B, Feb. 2022. 
[2] R. K. Harrison, “Phase II and phase III failures: 2013-2015,” Nat. Rev. Drug Discov., vol. 15, no. 12, pp. 
817–818, Nov. 2016. 
[3] S. E. Lazic and D. P. Williams, “Improving drug safety predictions by reducing poor analytical practices:,” 
https://doi.org/10.1177/2397847320978633, vol. 4, p. 239784732097863, Dec. 2020. 
[4] E. Semenova, D. P. Williams, A. M. Afzal, and S. E. Lazic, “A Bayesian neural network for toxicity 
prediction,” Comput. Toxicol., vol. 16, Nov. 2020. 
[5] S. Simoens and I. Huys, “R&D Costs of New Medicines: A Landscape Analysis.,” Front. Med., vol. 8, p. 
760762, Oct. 2021. 
[6] A. Legehar, H. Xhaard, and L. Ghemtio, “IDAAPM: integrated database of ADMET and adverse effects of 
predictive modeling based on FDA approved drug data,” J. Cheminform., vol. 8, no. 1, p. 33, 2016. 
[7] M. Berthold, N. Cebron, and F. Dill, “KNIME: The Konstanz information miner,” Data Anal. Mach. …, 2008. 
 

 
 
  



48 
 

[P9] Protein Subpocket Cloud Comparison Revealed Similarity Between 
HIV-1 Reverse Transcriptase and Tumor Necrosis Factor Binding Sites 

 
Merveille EGUIDA, Didier ROGNAN 

 
Laboratoire d’Innovation Thérapeutique, CNRS-Université de Strasbourg, 74 route du Rhin, 67400, 
Illkirch-Graffenstaden, France. 
 
 

The increasing number of druggable pockets in protein structures enables structure-based 
drug design via pocket similarity assessment. Identifying pocket similarity between unrelated targets 
across the proteome is valuable to drug design [1] but still is a challenge to binding site comparison 
methods, notably local similarities arising from cavity microenvironment. 

We therefore developed ProCare [2], a novel computational method to compare protein 
pockets using a 3D point cloud registration algorithm. In computer vision, point cloud registration is 
a fundamental problem of finding the best transformation (rotation, translation, scaling) to match two 
clouds of points. A protein pocket is here represented as an ensemble of 3D points annotated by 
atomic coordinates and microenvironment specific pharmacophoric properties. Following the 
characterization of each point with a hybrid shape-chemical descriptor (c-FPFH) [2-3], two pockets 
are aligned by superimposing their corresponding points sharing the most similar patterns. The 
alignments are evaluated by estimating the proportion of aligned points sharing the same 
pharmacophoric properties. 

Out of a large-scale comparison where subpockets from the sc-PDB database were 
compared to the Tumor Necrosis Factor alpha (TNF-α) [4], ProCare suggested a similarity with the 
non-nucleoside binding site of HIV-1 reverse transcriptase (HIVRT) [2, 5]. Extensive binding site 
comparisons using different structures of TNF-α [4] and HIVRT reinforced this similarity hypothesis, 
which was later confirmed by microscale thermophoresis assay where two out of three tested HIVRT 
approved drugs were found to bind to TNF-α (KD in the 20-40 µM range). Remarkably, other state 
of the art binding site comparison methods as well as ligand 2D fingerprints and 3D shape methods 
were not able to detect that similarity [5].  

ProCare allows local comparison of protein pockets of different sizes while yielding visually 
interpretable results. The method is ideally suited to identify local and unobvious similarities among 
totally unrelated targets, and appears as a promising idea generator for fragment-based ligand 
design, able to pick starting fragments at a proteomic scale, not necessarily influenced by existing 
ligand or cavity neighborhoods. 
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The web-platform PLATO (standing for Polypharmacology pLATform for predictiOn), is a 
ligand-based polypharmacology predictive platform, which has been designed with a two fold 
objective: to shortlist a number of putative protein drug targets and to compute the bioactivity affinity 
values. PLATO employs a pool including 632,119 druglike ligands and 6004 targets provided with 
experimental annotations retrieved from the latest update of ChEMBL (release 30) [1] according to 
transparent filtering rules elsewhere described and implements two just optimized multifingerprint 
similarity-based algorithms, which have been recently published, [2, 3] in a python web framework 
accessible through a graphical user-friendly interface available online at the following link: 
http://plato.uniba.it/ 

Users can interrogate PLATO by simply drawing the chemical structure of a given query or, 
alternatively, by pasting its SMILES notation. Two different screening options are thus given. The 
first is aimed at searching for putative drug targets based on molecular similarity. The second allows 
making quantitative predictions of bioactivity based on a statistical approach. In a few seconds, 
PLATO returns a standard report in a portable document format, which includes the list of the top-
scored 30 solutions as well as a wealth of additional information for each single result regarding the 
ligand chemical structure, the protein drug target and the bioactivity values. The standard report 
includes hyperlinks to redirect users to ChEMBL for further and deeper investigations. 
Please note that all the information gathered by PLATO are stored in a downloadable .json file.  
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Asthma and COPD are characterized by complex pathophysiology associated with chronic 

inflammation, bronchoconstriction, and bronchial hyperresponsiveness resulting in airway 
remodeling. The currently available therapeutic strategies do not address all of the most important 
pathological processes in the course of both diseases. Therefore, it is an urgent need to work out 
comprehensive solutions that fully affect the pathological processes of both diseases. As a possible 
solution for the enhanced treatment of asthma and COPD, we propose the rationally designed multi-
target-directed ligands (MTDLs), combining PDE4B and PDE8A inhibition with TRPA1 ion channel 
blockade. This approach allows forobtaining synergistic bronchodilatory, anti-inflammatory, and 
additional anti-remodeling activity. 

The aim of the study is to develop AutoML models to search for MTDL blocking PDE4B, 
PDE8A and TRPA1, which will allow the selection of novel MTDL chemotypes. 
Using “mljar-supervised” - Automated Machine Learning Python package [1], there were regression 
models developed for each of the biological targets (PDE4B, PDE8A, TRPA1). For this purpose, 
libraries of inhibitors derived from CHEMBL database and collected from scientific articles were 
used. Each inhibitor was represented by a set of calculated molecular descriptors (PADEL software) 
and IC50 values. Ensemble systems combining various modeling tools like artificial neural networks, 
decision trees and i.e. XGBoost were found as the best models for each of the biological targets. On 
their basis, virtual screenings of commercially available compounds derived from the ZINC15 
database, were performed. A common group of compounds placed within the top results were 
selected as potential novel chemotypes of multifunctional ligands. 

Further studies, carried out after the purchase of selected compounds, will be focused on in 
vitro activity tests providing reliable results to aid the discovery of MTDLs blocking PDE4B, PDE8A 
and TRPA1. 

The study was financially supported by the National Science Centre, Poland (grant no. 
2020/37/N/NZ7/02365). Calculations were performed partially with use of computers co-financed by 
the qLIFE Priority Research Area under the program “Excellence Initiative Research University” at 
Jagiellonian University and Polish Operating Programme for Intelligent Development POIR4.2 
project no. POIR.04.02.00-00-D023/20. 
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In this poster, we present a method used to create clusters of pharmacophores in order to 
support their detailed analysis.1 First, from a BCR-ABL molecular dataset, pharmacophores were 
automatically extracted and organized into a network. The network was spatialized by computing the 
graph edit distances between the pharmacophores as a similarity measure. The application of a 
force-directed layout algorithm allowed us to discriminate pharmacophores associated with active 
molecules from those associated with inactive molecules. Second, a clustering approach was used 
to refine the partitioning by grouping pharmacophores according to their structures, activities and 
binding modes. The analysis of this pharmacophore network provided us key information on 
structure-activity relationships, including the distinction between activity classes and chemical 
families. 
 

 
Figure 1: Representation of a BCR-ABL pharmacophore network with some associated molecules (Triangle: active pharmacophore; 
Circle: inactive pharmacophore). 
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In medicinal chemistry, a pharmacophore denominates a spatial arrangement of chemical 
features which is responsible for a favorable interaction with the binding site of the target. We have 
recently designed a method that automatically computes pharmacophores from a large data set of 
molecules without any prior supervised selection of a small subset of molecules [1, 2]. The 
connections between the computed pharmacophores provide a hierarchical organization: the 
pharmacophore network. The latter is structured by the pharmacophores’ size and contains a large 
number of them. The current work aims at developing a structure which a medicinal chemist can use 
to support his analysis without having to repeatedly mine pharmacophores. For this purpose, we 
enhance the knowledge on the pharmacophore network organization by taking into account parent-
children relations and/or grouping the pharmacophores into equivalence classes, i.e. sets of 
pharmacophores occurring in the exact same molecule group. Additionally, each pharmacophore is 
annotated with one or several quality measures (e.g. confidence or growth rate measurements), 
information that will be exploited later-on.  

The directed acyclic graph (DAG) is built and organized in layers which contain 
pharmacophores with the same number of pharmacophoric features, as well as the molecules that 
respond to them. Layers are linked by establishing parent-children relationships based on a sub-
graph relationship. The DAG can then be used to apply different filtering and selection algorithms, 
e.g. based on user-specified quality measures, the visualization of the effect on each layer. In order 
not to overwhelm the expert, the visualization is condensed by clustering nodes in each layer using 
the above-mentioned equivalence classes. We will also use the DAG to identify Pharmacophore 
Activity Delta (PAD). PADs are syntactic pharmacophores families, i.e. pharmacophores linked via 
the afore-mentioned parent-child relationships exhibiting a minimum amount of syntactic similarity, 
yet members of which show a significant difference between the values of their quality measures.  

Interactive Pattern Mining [3] is one of the objective of this work related to ANR project 
InvolvD (ANR-20-CE23-0023, https://involvd.greyc.fr/). This DAG was used to simulate the effects 
of users or functions interacting with the search space during the search itself.  
The DAG process was applied to BCR-ABL chemogenomic dataset (ChEMBL1862, ChEMBL_24). 
The BCR-ABL tyrosine kinase is an oncogene associated to chronic myeloid leukemia. We aim to 
expose our method and how far the PAD analysis highlighted original chemical structural features 
linked to active or inactive ligands.  

 
Figure: From a chemical database to the highlight of structural features of interest, we aim to present how our pharmacophore DAG can 
be used for fast 2D structural discrimination. 
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Introduction: 
Identifying the dynamic human cell line response to drug therapies is necessary to determine the 
time-course mode of drug action in medical and pharmaceutical research. However, the effect of 
drug perturbations on the cellular system is not well time-dependently investigated; thus, there is an 
incomplete picture of their mode of action. In this study, we developed a novel computational method 
to predict time-course drug-induced transcriptomic responses of the cellular system by integrating 
simulation- and data-driven approaches. 
Materials and methods: 
We performed dynamic sensitivity analyses with a mathematical model of the tricarboxylic acid cycle 
that was constructed in a previous study [1] and constructed drug-induced enzymatic sensitivity 
signatures as follows: 

𝑷𝑘(𝑡) = (𝑃1,𝑘(𝑡), 𝑃2,𝑘(𝑡),… , 𝑃𝑙,𝑘(𝑡))
T
, (𝑘 = 𝑛 + 1,… , 𝑛 +𝑚), 

where 𝑃𝑗,𝑘(𝑡)(𝑗 = 1,… , 𝑙; 𝑘 = 𝑛 + 1,… , 𝑛 + 𝑚) is the sensitivity for each enzyme at time t, n is the 

number of metabolites, m is the number of enzymes, and l is the number of enzyme genes. The 
signature represents the sensitivity of l enzyme genes to the perturbation of enzyme k at time t. 
Then, we compared enzymatic sensitivity signatures to drug-induced gene expression signatures [2] 
and predict the time course of drug responses for all genes [3]. The prediction is performed based 
on the correlation between the two types of signatures through common time points. 
Results and discussion: 
Figure 1 shows an example of observed and a time course of predicted drug-induced gene 
expression signatures in the CJM cell line in response to enasidenib, an anticancer drug for acute 
myeloid leukemia. The predicted time-course drug-induced gene expression data enabled the 
detection of various biological pathways affected by a drug treatment in a time-dependent manner. 
For example, it was identified that the translation process could be inactivated in the early stages of 
medication, which cannot be achieved through previous methods based on static gene expression 
data. Therefore, the proposed method can be used to increase our understanding of drug-induced 
transcriptomic responses over time. 

 
Figure 1 : Observed and predicted drug-induced gene expression signatures at various time points. The dendrogram above the heatmap 
shows the similarity among genes. 
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Anthracycline antibiotics (ANT) are among the most widely used group of anticancer drugs - 
both in solid tumors and hematological malignancies. Unfortunately, their usage is limited due to the 
drug resistance and cardiotoxicity, which can manifest not only during the therapy, but even many 
years after the treatment. It is postulated that those effects are caused by ANT metabolism (the two-
electron reduction of a carbonyl moiety), performed mainly by carbonyl reductase 1 (CBR1) and 
aldo-keto reductase 1C3 (AKR1C3). Thus, CBR1 and/or AKR1C3 inhibitors appear to become a 
potential support for ANT pharmacotherapy [1, 2]. 

The aim of the study was to implement computational methods in optimization of CBR1 and 
AKR1 crystal structures to obtain high-quality models, which then were used to perform virtual 
screenings, leading to a selection of potential dual CBR1-AKR1C3 inhibitors – a group of substances 
with a unique inhibitory effect against both crucial ANT reductases. 

20 CBR1 ligands and 13 AKR1C3 ligands were used in Induced-Fit docking procedure, 
leading to the initial models of the enzymes with optimized conformations of amino acid residues of 
the catalytic sites. The models were then evaluated in retrospective virtual screening and molecular 
dynamics simulations. Those steps resulted in the selection of one model for both CBR1 (model 
11E3: BEDROCα=20: 0.698; EF1%: 36) and AKR1C3 (model 74H1: BEDROCα=20: 0.643; EF1%: 22), 
which then were used in prospective virtual screenings. Over 1 million compounds taken from ZINC 
database have been docked into the prepared models of CBR1 and AKR1C3 to find such structures, 
that would present the correct binding mode within the catalytic sites of both analysed molecular 
targets (based on visual examination and assessment of ‘glide gscore’ scoring function values). The 
most promising compounds were then evaluated in in vitro assessment performed on recombinant 
CBR1 and AKR1C3 enzymes. 

The adopted methods of structure-based drug design led to the selection of initial compounds 
with moderate inhibitory activity against both crucial ANT reductases: CBR1 and AKR1C3. It is 
planned to use computational methods for further optimizations and eventually to determine the 
structure-activity relationships within ANT-reductases inhibitors. 
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Introduction: Among the many challenges in the field of medicine, viral diseases have always been 
a great challenge for the world. A sudden emergence of a new stream of coronaviruses and a rapid 
spread of SARS-CoV-2 around the world shows how we stand in need of new, fast methods for 
discovering compounds with potential antiviral activity. Use of computational methods in search for 
patterns that can indicate compounds with desired activity can successfully accelerate future 
research. In our studies, we wanted to integrate molecular modeling and machine learning 
techniques into an effective algorithm that can indicate the activity against SARS-CoV-2 main 
protease during virtual screening. 
Aim: The study aimed to develop and apply virtual screening protocol that will allow us to discover 
novel inhibitors of SARS-CoV-2 Mpro.  
Material and methods: Models were built on a group of 8702 ligands with known activity expressed 
as a percentage of SARS-Cov-2 Mpro inhibition derived from the ChEMBL database [1]. We 
prepared three separate classification models assigning compounds as active (percent inhibition> 
80%) and inactive. The first one was based on molecular descriptors generated by Padel software 
[2] and ML classification methods. The second model was based on pharmacophores prepared with 
the LigandScout software. The last model was prepared by molecular docking with the Glide from 
Maestro - Schrödinger. The best models were integrated into virtual screening protocol. 
Results: We used the ROC curves to evaluate the prognostic ability of the obtained models. The 
best models had high AUC values of 0.81. This indicates a significant advantage of true positive 
predictions against the false positive ones. 
Conclusions: Taking into account the high diversity in the structure of the compounds used to build 
the models and the promising results of their validation, we believe that the proposed virtual 
screening protocol can be successfully applied in the search for new SARS-Cov-2 Mpro inhibitors. 
Acknowledgments: The project is co-financed by the Polish National Agency for Academic 
Exchange, grant PPN/BIT/2021/1/00056/U/00001 and the Jagiellonian University Medical College 
grant N42/DBS/000217 
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The construction of a virtual library (VL) consisting of novel compounds based on structure−activity 
relationships is important for lead optimization in de novo drug design. In this study, we develop a 
novel scaffold-retained structure generator, EMPIRE (Exhaustive Molecular library Production In a 
scaffold-REtained manner), to produce novel compounds in an arbitrary chemical space.[1] An 
overview of the proposed method is shown in Figure 1. By combining a deep generative model-
based generator and a building block-based generator, our proposed method efficiently provides a 
VL consisting of compounds that retain the input scaffold and contain unique arbitrary substructures. 
Our proposed method enables us to construct high quality VLs located in unexplored chemical 
spaces containing compounds with unique structures such as bicyclo[1.1.1]pentane and cubane or 
elements such as boron and silicon. We expect EMPIRE to contribute to efficient de novo drug 
design with unique substructures by virtual screening. 
 

 
Figure 1. Overview of our proposed structure generator called EMPIRE. The compound is entered as a combination of a scaffold and 
fragment structures. If the input fragments are none, a methyl group is formally inputted as a fragment. The fragment structures are used 
in a deep generative and building block models. The fragments produced by each model are inserted into asterisks on the input scaffold, 
and new compounds are produced. 

 
 
 
Bibliography :  
 
[1] K. Kaitoh; Y. Yamanishi. J. Chem. Inf. Model. (2022) https://doi.org/10.1021/acs.jcim.1c01130 
 

 
 
 

  

https://doi.org/10.1021/acs.jcim.1c01130


57 
 

[P18] DeLA-Drug: a Deep Learning Algorithm for Automated Design of 
Drug-like Analogues 

 
Giuseppe LAMANNA2,3, Teresa Maria CREANZA1, Pietro DELRE2,3, Marialessandra CONTINO4, 
Nicola CORRIERO3, Michele SAVIANO3, Giuseppe Felice MANGIATORDI3 and Nicola ANCONA1 

 
1 CNR - Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, 
Via Amendola 122/o, 70126 Bari, Italy 
2 Chemistry Department, University of Bari “Aldo Moro”, via E. Orabona, 4, I-70125 Bari, Italy.  
3 CNR – Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy 
4 Department of Pharmacy - Pharmaceutical Sciences, University of Bari “Aldo Moro”, via E. 
Orabona, 4, I-70125 Bari, Italy 
  

 
We present DeLA-Drug,1 a recurrent neural network (RNN) model composed of two Long 

Short-Term Memory (LSTM) layers and conceived for data-driven generation of drug-like 
compounds. DeLA-Drug captures the syntax of SMILES strings of more than 1 million molecules 
belonging to the ChEMBL28 database and generates analogues starting from a single user-defined 
query compound by employing a new strategy called Sampling With Substitutions (SWS). The 
generative model preserves drug-likeness and synthetic accessibility of the known bioactive 
compounds belonging to the ChEMBL28 repository. The absence of any time-demanding fine-tuning 
procedure enables DeLA-Drug to perform a fast generation of focused libraries for further high-
throughput screening and makes it a suitable tool for performing de-novo design even in low-data 
regimes. DeLA-Drug, available as a free web platform (http://www.ba.ic.cnr.it/ 
softwareic/deladrugportal/), can help medicinal chemists interested in generating analogues of 
compounds already available in their laboratories and, for this reason, good candidates for an easy 
and low-cost synthesis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Main steps of the DeLA-Drug workflow.  
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For the setting of optimal dose in clinical stage, PK/PD understanding for both efficacy and 
safety is imperative, and it needs information of the concentration over time explicitly, like time above 
MIC. However, pharmacokinetic (PK) parameters such as clearance (CL) and volume of distribution 
(VD), which are too oversimplified to understand PK/PD relationship, have been the subject of recent 
in silico predictive models [1, 2]. Then, although the intravenous PK data is easy to be dealt, deriving 
profiles for oral administration (p.o.) is pertinent as 80% of all dosage forms are oral [3]. In this study, 
despite its increased complexity due to a variety of absorption processes [4], we predicted p.o 
concentration time profiles by developing novel in silico models of plasma concentration at 
consecutive time points after oral administration.  

To this end, we used mouse p.o. PK data obtained for 871 compounds (17 projects) under a 
standardized protocol (single dose: 2 µmol/kg, 7 time points for blood sampling). For explanatory 
variables, MACCS Keys as well as in silico predicted human VD (hVD), in-vitro Caco2 permeability, 
solubility, mouse intrinsic clearance (mCLint), and unbound fraction of mouse plasma (mfu) were 
used. The predictive accuracy of Random Forest models (RF), 2-compartment models using 
estimated CL and VD (CPM), and average models (as a control experiment, AVM) were investigated 
using 5-fold cross validation (5-fold CV) and leave-one-project-out cross validation (LOPO-CV). 
The average predictive accuracy of RF in 5-fold CV was the best among the models studied. The 
RMSE at 0.25 h, 1 h, and 8 h were RF: 0.500, 0.612, 0.509; CPM: 0.611, 0.756, 0.547, and AVM: 
0.758, 0.827, 0.776, respectively. This RF was further validated using LOPO-CV (ranges of 
predictive accuracy of 8 projects having over 25 compounds): 0.494-0.772 at 0.25 h, 0.523-1.024 at 
1 h, and 0.296-1.305 at 8 h. We next investigated the importance of the PK explanatory variables 
using the GINI index. At 0.25 h, the importance of Caco2 permeability was 2.1 times higher than the 
next most important variable (mCLint). At 2 to 8 h, the importance of hVD, mCLint, and mfu were at 
least 1.8 times higher than the next one (Caco2 permeability). Given the good acurracy of the in 
silico model, this suggests that these parameters contribute differently towards the efficient model 
abstraction of key absorption and distribution processes at different time points after administration, 
and this is consistent with the prior knowledge of ADME research. Although the predictivity depended 
on each project, due to its combination of sufficient accuracy and speed of prediction we found the 
model to be fit-for-purpose for practical lead optimization. 
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New protein-ligand docking strategies have emerged over time, shifting from approaches 
considering the protein as completely rigid to approaches taking into account the protein flexibility. 
In this study, we present a protocol to rationally select a subset of residues which side chains should 
be considered as flexible during the docking with no requirement of prior computational studies. We 
then evaluate the impact of this choice on the docking performances. 

This study focus on the androgen receptor (AR) [1], which is a member of the nuclear receptor 
(NR) family. AR binding (B) and non binding (NB) compounds were extracted from the Environmental 
Protection Authority (EPA) Dataset Gateway [2]. AR structures were extracted from the Protein Data 
Bank. The AR structures were evaluated using the MolProbity webserver [3] and by inspection of 
the electronic density maps and 8 structures were selected accordingly. Different docking softwares 
(Autodock Vina, smina and GNINA) and scoring functions (vina, vinardo and dkoes_scoring) [4,5] 
were then evaluated using both rigid and flexible protein protocols. The 2 AR structures associated 
with respectively the best and the worst AUC using the rigid protein docking protocol were then 
submitted to the flexible protein docking protocol. To do so, we first set as flexible the side chains of 
all residues within a 4Å cut-off distance from the co-crystallized ligand. In a second time, we studied 
the docking performance associated with different combination of 1 to 6 residues with flexible side 
chains. These 6 residues were selected according to the intrinsic flexibility of their side chain, the 
alternate conformation observed within different AR structures and their position in the binding site. 

We demonstrated that taking into account the protein flexibility enable to enhance docking 
performance. In particular, we highlighted that this can be achieved by selecting only a small number 
of flexible side chains (a combination of 3 residues). This is a crucial point to generate results for 
large compounds libraries with reasonable computational times. 
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Ultra-large ‘on-demand’ combinatorial libraries [1, 2] are revolutionizing virtual screening 
strategies aimed at identifying innovative hit compounds or guide fast hit to lead optimization. Due 
to their size (several billion molecules), these libraries are encoded as fragment spaces defined by 
starting building blocks and organic chemistry yielding the fully enumerated compounds, and 
required ad-hoc browsing similarity search algorithms [3]. The pairwise maximum common 
substructure (MCS) similarity across commercial ultra-large fragment spaces has recently been 
addressed and shown to be surprisingly low [4]. However, the MCS similarity to commercially 
available drug-like libraries (‘on-the-shelf’ physically-available compounds) remains unknown. 

We therefore assembled a library of 9.3 million drug-like compounds from 25 trustable 
suppliers using a series of in-house druggability filters. This ‘on-the-shelf’ chemical space was next 
represented by a list of 2.4 million Bemis-Murcko scaffolds [5] that were searched, using the 
SpaceMACS algorithm [6], in three on-demand fragment spaces: Enamine’s REAL (19 billion 
compounds), Otava’s CHEMryia (11 billion compounds), and WuXi’s GalaXi (2.1 billion compounds). 
Surprisingly, only the REAL fragment space significantly overlapped the commercial MCS space, 
suggesting that the later ‘on-demand’ fragment space is the most suitable for most hit to lead follow-
up studies. The remaining two spaces (CHEMryia, GalaXi) are however interesting notably for 
primary hit identification among chemical spaces clearly orthogonal to that covered by commercially 
available screening decks. Potential biases in the current analysis will be discussed. 

 
 
 
Bibliography : 
 
[1] Gastreich, M. et al. Drug Discov. Today, (2019), 24, 1148-1156. 
[2] Gorgulla, C. et al. Nature (2020), 580, 663–668. 
[3] Warr, W.A. et al. J. Chem. Info. Model., (2022), https://doi.org/10.1021/acs.jcim.2c00224 
[4] Bellmann, L. et al. J. Chem. Inf. Model. (2022), 62, 553-566. 
[5] Bemis, G.W. et al. J. Med. Chem. (1996), 39, 2887-2893. 
[6] Schmidt, R., Klein, R. and Rarey, M. J. Chem. Info. Model. (2021), https://doi.org/10.1021/acs.jcim.1c00640 
 

  



61 
 

[P22] Structure-Guided Design of Novel Tubulin Binders – Towards 
Site-Specific Cysteine Targeting 

 

H. PEREZ-PEÑA1,2*, M. SHEVELEV1*, A-C. ABEL2,3*, Z. BOIARSKA2,3*, F. BONATO2,4*, A. 
SOLIMAN4*, M. Á. OLIVA4, F. J. DÍAZ4, A. VARNEK1, M. O. STEINMETZ3, D. HORVATH1, S. 

PIERACCINI2, D. PASSARELLA2, A. E. PROTA3 

 
1 Laboratoire de Chémoinformatique, UMR 7140, Université de Strasbourg, 1 rue Blaise Pascal, 
67000 Strasbourg (France) 
2 Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milan (Italy) 
3 Laboratory of Biomolecular Research, Paul Scherrer Institute Forschungsstrasse 111, 5232 
Villigen PSI (Switzerland) 
4 Centro de Investigaciones Biológicas Margarita Salas Consejo Superior de Investigaciones 
Científicas, Ramiro de Maeztu 9, 28040 Madrid CSIC (Spain)  
 
 

Microtubule (MT)-targeting agents (MTAs) have been shown to be potent modulators of 
cellular growth of outstanding practical importance (in particular anticancer agents like paclitaxel, 
maytansine). However, these are no homogeneous family – neither chemically, nor mechanistically 
speaking – and therefore discovery of new species with distinct action mechanisms may open novel 
perspectives. The European ITN network TubInTrain has therefore dedicated a work package to 

the rational discovery of novel -tubulin binders. 
Seven small molecule binding sites on tubulin were known[1], until they were recently 

complemented with 11 novel ones through a comprehensive crystallographic fragment screen[2]. 
Furthermore, it was demonstrated that it is possible to “grow” a fragment binding to a novel site at 
the inter-dimer interface, into a fully active tubulin targeting agent (dubbed “Todalam”), able to 
modulate MT dynamics[3]. 

First, virtual screening based on targeted substructure replacement of Todalam, 
pharmacophore modelling and docking was successfully applied in order to discover alternative 
chemotypes (scaffold hopping) able to target the Todalam site. Alternative binders were validated 
by obtention of their tubulin-bound X-ray structures and in vitro MT-polymerization assays. 

It was noticed that Todalam site binders are proximal to residues Cys4 and Cys200 of a-
tubulin. This inspired us, knowing that only one covalent MT binder is known so far (pironetin[4]). 
Resulting covalent Todalam site binders could serve as molecular probes to investigate further MT 
dynamics and breakdown associated with neurodegeneration.  

In order to discover ways to covalently link the so-far discovered binding scaffold to the 
cysteines, we performed a virtual screening of fragment-like compounds with Cys-binding warheads 
from commercial libraries and fitting the chemical synthesis protocols that can be performed in our 
laboratory. The top-scoring products were then filtered by a strict selection process, heavily based 
on the binding pose (conservation of ligand-site contacts undergone by Todalam). Their stability 
within the binding pocket was assessed by molecular dynamics simulations. Promising candidates 
will be synthetized, subjected to X-ray crystallography experiments and in vitro MT-polymerization 
assays.  
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The global epidemic of human immunodeficiency virus (HIV) infection is one of the major 
healthcare problems worldwide. The development of drug resistance decreases the efficacy of 
antiretroviral therapy that plays a pivotal role in HIV treatment. As a result, an optimal choice of the 
treatment regimens is required to avoid the emergence of the resistance. Computational methods 
allowing to predict resistance profiles based on genotypic data represent a perspective alternative 
to time- and labour-consuming experimental measurements. However, current computer-based 
approaches for drug resistance predictions are either not suitable for emerging HIV strains with 
complex mutational patterns [1] or lack interpretability, which is of primary importance in clinical 
practice. In this study, we propose a methodology for drug resistance profiling, which addresses 
these drawbacks (Figure 1). The methodology is based on an interepretable machine learning 
method, Generative Topographic Mapping (GTM) [2]. GTM was applied to build illustrative maps of 
HIV viral protein sequence space and to model quantitative genotype-phenotype relationships 
(QGPR). The sequence and associated resistance data were retrieved from the Stanford HIV drug 
resistance database [3]. The sequences of the three viral proteins integrase (IN), protease (PR), and 
reverse transcriptase (RT), encoded as variable length k-mers counts vectors and associated with 
drug resistance profiles for 20 anti-HIV drugs were used for modeling. The QGPR models 
represented as GTM-based resistance landscapes enabled us to predict HIV drug resistance with 
accuracy comparable with other machine learning methods:random forest, support vector machine, 
gradient boosting. The average balanced accuracy for PR inhibitors was 0.89±0.01, for IN inhibitors 
0.85±0.01, for non-nucleoside RT inhibitors 0.73±0.01, and nucleoside RT inhibitors 0.84±0.01. The 
GTM-based resistance and mutation landscapes have been shown to be effective for the in-depth 
investigation of the resistance profiles through examination of the relationships between mutation 
patterns and drug resistance. The role of specific mutations (e.g. V32I, L10F, and L33F in HIV PR) 
for the resistance development was predicted and retrospectively validated using literature data. 
Overall, this work highlights potential perspectives of the GTM application in the field of 
bioinformatics as an interpretable machine learning tool for the illustrative sequences space 
exploration. [4]  
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Figure 3. Key steps of the GTM method applied to amino acid sequence space. Each amino acid sequence is encoded by a numerical 
vector (1) defining its position in the N-dimensional descriptor space (2). The flexible manifold is fitted in a way to approach the data points 
followed by projection of the data points onto the manifold (3). The unbending of the manifold yields a 2D map. Each projected datapoint 
is characterized by a probability to be located in the nodes of a rectangular grid superposed with the manifold. (4) Each node is then 
associated (“coloured”) with a weighted average of resistance values of residing sequences. Ensemble of the coloured nodes forms the 
resistance landscape (5). 
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DNA-Encoded Library1 (DEL) technology has emerged as an alternative method for the 
discovery of bioactive molecules in medicinal chemistry. It enables quick synthesis and screening of 
compound libraries of enormous size. Despite its growing popularity, very few reports are devoted 
to the analysis of DEL chemical space. Therefore, in this work, we aimed to (1) computationally 
generate and analyze the ultra-large chemical space of DELs and (2) thereupon estimate individual 
DEL relevance for primary biological screening when little or no information about a biological target 
and its binders is available2. Around 2500 DELs containing 2,5B compounds were designed from 
commercially available building blocks and DEL-compatible reactions using eDesigner3, which is a 
freely available computational tool for DELs generation. The resulting DELs were analyzed and 
compared to the ChEMBL4 library of biologically tested molecules using Generative Topographic 
Mapping5 (GTM) to identify the DEL(s) significantly occupying ChEMBL space, thus best suited for 
primary screening (figure 1). A so-called “golden” DEL most suitable for this task allowing to cover 
60% of ChEMBL chemical space was found. Different combinations of DELs were also analyzed to 
find a set of mutually complementary libraries that can be pooled together and used for screening, 
allowing to attain even higher coverage of ChEMBL chemical space. In such a way, sets of three 
and five DELs containing the maximum possible percentage of biologically relevant chemotypes 
were selected. The developed approach is not limited to the selection of libraries for primary 
screening, given a library of active molecules against a particular biological target it can be also used 
to design focused DELs. 

  
Figure 1. General workflow of GTM-based selection of the optimal DEL for primary biological screening from DELs generated by 
eDesigner.  
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We report a novel approach for grading chemical structure drawings for remote teaching, 
integrated in the Moodle platform. Typically, existing online platforms use a binary grading system, 
which often fails to give a nuanced evaluation of the answers given by the students. Therefore, such 
platforms are unevenly adapted to different disciplines. This is particularly true in the case of 
chemical structures, where most questions simply cannot be evaluated on a true/false basis. 
Specifically, a strict comparison of candidate and expected chemical structures is not sufficient when 
some tolerance is deemed acceptable. To overcome this limitation, we have developed a grading 
workflow based on the pairwise similarity score of two considered chemical structures. This workflow 
is implemented as a Moodle plugin, using the Chemdoodle engine for drawing structures, and 
communicating with a REST server to compute the similarity score using molecular descriptors. The 
plugin is easily adaptable to any academic user; both embedding and similarity measures can be 
configured. 
 

  

 

  

Figure 1. Workflow of the plugin. The teacher drafts a question, which is proposed to the student via the Moodle interface. The student 
and expected answers are sent to a server for comparison and soft grading. The grade is returned to Moodle for evaluation and feedback 
to the student. 
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For the last 25 years, Fragment-Based Drug Discovery (FBDD) has widely increased 
in popularity and proven its interest by connecting many worlds, from computational 
chemistry to biophysics.1 It has become an alternative to High-Throughput Screening (HTS) 
and has the advantage of covering a large chemical space with a small number of fragments 
while providing structural information for the elaboration of hit into druglike compound.2 

This work aims to analyze the composition of commercial fragment libraries. We 
focused on important topics on FBDD: molecular obesity3, three-dimensionality4 and 
chemical diversity. 

We collected the fragments of 86 freely-available libraries from 14 suppliers. We 
determined, for the full ensemble of fragments, the chemical descriptors related to the Rule 
of 35 (MW ≤ 300, logP ≤ 3, hydrogen bond donor ≤ 3, hydrogen bond acceptor ≤ 3), and 
three-dimensional descriptors (PBF6, SASA, 3D-PSA). To assess the chemical diversity of 
libraries, we studied the number and frequencies of chemical scaffolds, and analyzed the 
fragment space using Generative Topographic Map7 (GTM). 

We studied 754 646 molecules, 512 284 after filtering the duplicates. The library size 
ranges from 80 to 172 723 compounds. The small libraries, containing a maximum of 2000 
molecules, are the most interesting with respect to experimental testing. The analysis of the 
2D and 3D descriptors showed that MW and logP distributions are globally well balanced in 
small libraries and that there is a bias towards flat molecules. The scaffold analysis revealed 
a sur-representation of very simple scaffolds as well as many scaffolds present in only one 
molecule. Finally, the analysis of the GTM landscapes allowed the systematic comparison 
of the libraries by pairs. It also allowed to evaluate whether a library is representative of the 
full fragments set. 

In conclusion, our results provide guidelines for the selection or the design of an 
adequate library for a specific project. 
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Human are surrounded by numerous odorant molecules in the air from a limited number of 
olfactory receptors (1), and the odor perceived from these molecules does not comes from the 
isolated molecules but from their mixture (2). According to the odor perceived from the mixture, we 
differentiate the heterogeneous perception which is the distinction between the odor components of 
the mixture and the homogeneous perception that corresponds to the perception of a single odor 
from the mixture preventing the distinction between odor components of the mixture. There are two 
types of homogeneous perceptions: the masking and the blending mixture. Masking occurs when 
one of the mixture components covers the other constituents and we can only smell the odor of one 
of the mixture components. And, we will speak of blending mixture when the perceived odor is 
different from each of the mixture components. In the present study, we focus on both types of 
homogeneous perception with a red cordial (RC) mixture involving vanillin, isoamyl acetate, 
frambinone, ethyl acetate, beta-ionone, beta-damascenone (blending mixture) (3) and a woody-fruity 
mixture (masking mixture) involving whiskey lactone (WL) and isoamyl acetate (IA) (4). The aim was 
to improve the understanding about homogeneous perception combining classification and 
pharmacophore approaches. By collecting from different data sources, we built a large dataset listing 
more than 5000 odorant molecules associated with their odors. Using the fingerprints representing 
the structure of these molecules, we performed a dimension reduction by the Uniform Manifold 
Approximation and Projection and then a Self-organizing map (SOM) classification on the 
coordinates of the reduced dimensions that led to define specific clusters. Pharmacophore modeling 
was performed to determine the presence of common features between the molecules for each of 
the mixtures. We used (i) subsets of the components of the aroma mixtures; and (ii) subsets of about 
ten of molecules selected on the basis of their odor notes in the SOM clusters containing the 
components of the mixtures. About the masking, relevant hypotheses were obtained from the WL 
and IA subsets, unlike the subsets constituted by the RC mixture components, from which no 
relevant hypotheses were generated. These results suggest that WL and IA could have common 
binding sites while the components of RC mixture have probably not. Consequently, two different 
ways for the formation homogeneous perception could exist. The configural perception of the 
masking could take place at the peripheral level whereas for the RC mixture, the configural 
perception might rather require the signal integration at higher levels, in the olfactory bulb and/or in 
the brain. 

This work was supported by Agence Nationale de la Recherche (ANR-18-CE21-0006-01 
MULTIMIX).  
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Alzheimer’s disease (AD) is a genetic and sporadic neurodegenerative disease occurring as 

a consequence of accumulation of -amyloid and tau proteins in the brain. Conclusive evidence 
suggests metabolic deficiencies (such as glucose metabolism, mitochondrial dysfunction, etc.) 
contribute to, or at least are co-occurring with AD pathogenesis. We report the analysis of a dataset 
of mass spectra obtained using the Biocrates P180 kit and mass spectrometry for the quantification 
of biologically active molecules (for instance: amino acids, biogenic amines, lipids) within the AD 
samples (blood, tissues, etc.). The aim is to detect a correlation between metabolite levels and AD 
state of a patient (diseased / healthy).  

Metabolomic data has been obtained from Alzheimer’s disease neuroimaging initiative 
(ADNI) and AD Knowledge portal. The metabolomic data represents a multidimensional space. In 
this project, we apply a novel non-linear dimensionality reduction method called Generative 
topographic mapping (GTM) to explore the metabolomic space in AD. GTM can be used to 
understand whether and how the metabolic profiles of patients in various stages of AD are different 
and thus separated on the map. By contrast to standard Principal Component Analysis typically used 
in metabolomic studies, GTM has certain key advantages: it is a non-linear method using fuzzy logics 
to map every item (patient defined by his or her vector of metabolites) on relevant map “nodes”, with 
various degrees of patient-node association (these degrees of associations are termed 
“responsibilities”). Based on these responsibilities, map nodes can be “colored” as a function of the 
clinical status (diseased / healthy in a most simple binary scenario) of associated patients. Resulting 
fuzzy clinical class landscapes can be analyzed to (a) understand the metabolite concentration 
signatures that are specific to patients in each clinical class and (b) tentatively predict the clinical 
status of any new patient based on measured metabolite levels – by projecting the metabolite 
concentration vector on the map and “reading” the predicted clinical class of matching nodes. 
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Endocrine disrupting chemicals (EDCs) are compounds able to penetrate the body and to 

interfere with the functions of the endocrine system (1). EDCs are considered as a public health 
threat since human exposure to these compounds have been associated with increased risk of 
several diseases (2,3). It has been shown that EDCs can act through direct binding to nuclear 
receptors (NR) which leads to either inhibition or overactivation of the hormonal activity (4). Early 
detection of potential EDCs becomes an imperative as it is a guarantee of safety for several fields 
including pharmaceutical, food industry and agriculture. Several health and environmental 
authorities have been investigating suspicious compounds through experimental testing. However, 
this remains a challenging task due to the considerable number of compounds to be evaluated. In 
silico methods can be used in complement to prioritize compounds for experimental testing (5).  

In this work, we propose a pipeline combining structure-based (SB) and ligand-based (LB) 
models to predict potential EDCs based on their ability to bind six nuclear receptors: AR, ERα, ERβ, 
GR, PPARγ and TRα. The pipeline output enables to categorize query compounds into “high”, 
“intermediate”, “medium” and “low” risk of being NRs binding compounds and thus, accordingly to 
the direct mechanism, potential EDCs. To build the pipeline, data was collected from the EPA 
Comptox dashboard (6) gathering structurally diverse compounds experimentally tested in multiple 
endpoints against several protein receptors. The dashboard was filtered to only keep the compounds 
tested in binding assays against each studied NR leading to six individual datasets. Each one of 
these datasets was then employed to build docking, SB and LB pharmacophores models. Each 
model was optimized, and their combinations have been assessed to select the protocol associated 
with the best performances for each receptor. The best performances among the six studied NRs 
were obtained with the ERβ data set for which the combination of docking and pharmacophore 
models reached high sensitivity, specificity and accuracy values (0.8, 0.6 and 0.65 respectively). 
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The interaction of plasma and hot gases, for example argon (Ar) with walls and the tungsten (W) 
divertor is one of the main problems for using tokamaks as fusion devices since heavy atoms can 
contaminate the plasma and cause disruptions. Despite a large amount of experimental and 
computational data on tungsten, the sputtering yields caused by low-energy Ar atoms are still poorly 
understood [1]. The best way to describe such systems requires fitting of very accurate atomistic 
potential energy functions based on quantum chemical calculations. High Dimensional Neural 
Network Potentials (NNPs) have shown to be very efficient for such purposes [2]. In this work we 
trained a feedforward neural network potential with two hidden layers of 25 nodes each. The input 
nodes consist of weighted radial and angular Behler-Parrinello type symmetry functions [3]. 6230 
configurations containing 72 and 144 W atoms and one Ar atom each served as reference data. 
5655 total energies and 1 140 705 forces are used to train the final NNP. The remaining 10% of the 
structures were used as test set. Within 50 training steps, the RMSE in the test set converged to 
0.94 meV/atom for energies and 0.17 eV/Å for atomic forces. The corresponding values in the 
training set are 0.97 meV/atom and 0.19 eV/Å. The range of potential energies and forces per atom 
in the training data is quite large. The correlation of the NNP vs. the reference energies and the 
corresponding forces together with their distributions are shown in figure 1. The trained NNP will be 
used for further simulating the sputtering by molecular dynamics. 

 
Figure 1. Two-dimensional histograms of DFT-calculated and NNP-predicted atomic energies and forces (subplot). 

 
 
 

Bibliography:  
 
[1] M.Rieth, R.Doerner, A.Hasegawa, , Y.Ueda, and M. Wirtz. J. Nucl. Mater. 519 (2019) 334-368. 
[2] A.Singraber, J.Behler, and C.Dellago. J. Chem. Theory Comput. 15 (2019) 1827–1840 
[3] M.Gastegger, L.Schwiedrzik, M.Bittermann, et al. J. Chem. Phys. 148 (2018) 241709  



70 
 

[P31] Protein-Applied Computer Vision and Deep Generative Linking to 
Generate Potent Kinase Inhibitors: Influence of Fragments Definition 

 
François SINDT, Merveille EGUIDA and Didier ROGNAN 

 
Laboratoire d’Innovation Thérapeutique (LIT), UMR7200 CNRS-Université de Strasbourg, F-67400 
Illkirch, France 
 

 
We recently described a novel computational fragment-based drug design strategy to grow 

ligands inside a target cavity.1 First, the query cavity, represented as an image by a point cloud with 
key shape and pharmacophoric properties, is aligned by a computer vision method to an archive of 
images describing fragmented ligands-bound subpockets from the Protein Data Bank.1 The 
fragments of the most similar PDB subpockets are then directly positioned in the query cavity using 
the corresponding pocket transformation matrices. Last, suitable connectable atoms of already 
oriented fragment pairs are linked by a deep generative model2 to yield fully connected molecules. 
The above-described approach was applied to design a focused inhibitor library targeting human 
cyclin dependent kinase 8 (CDK8) and yielded several nanomolar inhibitors.3 We herein investigate 
how the fragmentation scheme influence the collection of available fragments/subpockets and drives 
the final library design. 
 
 
 
Bibliography:  
 
[1] Eguida M, Rognan D. A Computer Vision Approach to Align and Compare Protein Cavities: Application to 
Fragment-Based Drug Design. J Med Chem. (2020), 63:7127-7142. 
[2] Imrie F, Bradley AR, van der Schaar M, Deane CM. Deep Generative Models for 3D Linker Design. J Chem 
Inf Model. (2020), 60:1983-1995 
[3] Eguida M., unpublished data 

  



71 
 

[P32] Study of Odorants Sharing the Odor Notes of an Aroma Blending 
Mixture by a Pharmacophore Approach 

 
Anne TROMELIN1, Florian KOENSGEN1, Marylène RUGARD2, Karine AUDOUZE2, 

Thierry Thomas DANGUIN1, Elisabeth GUICHARD1 

 
1Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de 
Bourgogne Franche-Comté, F-21000 Dijon, France 
2Université de Paris, INSERM UMR‐S1124, F-75006 Paris, France 

 
 

Odors perceived in our environment are mainly the result of mixtures of odorants whose the 
specific mechanisms involved in their processing remain poorly understood [1].  

In previous studies performed at INRAE-CSGA [2], the perception of a mixture of ethyl 
isobutyrate (Et-iB, strawberry-like odor, STR) and ethyl maltol (Et-M, caramel-like odor, CAR) was 
investigated in comparison with a reference (allyl hexanoate, Al-H, pineapple-like odor, PNA) chosen 
to evoke an odor close to the one expected in the mixture. The binary specific mixture of Et-iB and 
Et-M was judged as more typical of a pineapple odor than the individual components. 

Some studies highlight the significance of the biological function of odorant, that is to say 
their odor, to understand odorant discrimination [3, 4]. From this perspective, we selected molecules 
having two of the three odors STR, CAR or PNA from the large odorants database that we recently 
used to perform a multivariate statistical analysis [5]. The pharmacophore generation were 
performed separately using 9 molecules STR-CAR on the one hand, and 4 molecules STR-PNA on 
the second hand. We used Common Feature Pharmacophore Generation protocol (Discovery Studio 
4.5, Biovia) to generate pharmacophore hypotheses [6]; the maximum number of generated 
hypotheses for each run was set to 10. In our study, the pharmacophoric features considered are 
hydrogen bond acceptors (HBA/HBA-lip) and hydrophobic regions (HY/HY-Al). 

All the hypotheses generated from both the STR-CAR and the STR-PNA sets are made up 
of 2 HBA/HBA-lip. Besides, STR-CAR hypotheses have only 1 HY/HY-Al while there are 2 for STR-
PNA hypotheses. We compared the best significant hypotheses generated from STR-CAR and STR-
PNA. A distance close to 8 Å between the centers of at least one HY and one HBA is common to 
STR-CAR and STR-PNA models. The pharmacophore comparison of the two models revealed a 
satisfactory mapping of the features. 

The obtained result is in line with the scheme of olfactory coding, and is consistent with the 
hypothesis that molecules sharing the odors involved in a blending mixture could recognize a 
common set of ORs. 

This work was supported by the Agence Nationale de la Recherche (ANR-18-CE21-0006-01 
MULTIMIX) and INRAE‐TRANSFORM department (ANS CAMELIA). 
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Accurate prediction of binding affinities in protein-ligand complexes from their 3D-structures 
remains a major challenge in drug discovery. Repetitive claims that deep learning methods represent 
a significant breakthrough in quantifying protein-ligand binding have been contradicted by 
independent groups warning about potential biases in ligand and protein composition of training/test 
sets of experimentally determined structures of protein-ligand complexes such as the PDBBind 
dataset [1]. In the current study we use message passing graph neural networks [2] , which can be 
trained on independent representations of ligand and protein as well as on their interaction pattern. 
We show that explicit description of protein-ligand non-covalent interactions does not provide any 
advantage with respect to simple ligand or protein descriptors. Simple models, inferring binding 
affinities of test samples from that of the closest ligands or proteins in the training set, already exhibit 
good performances suggesting that memorization largely dominates true learning in deep neural 
networks applied to the binding affinity prediction problem. The current study suggests considering 
only non-covalent interactions while omitting their protein and ligand atomic environments. The 
simple interaction-only model appears to be robust enough to be applicable to various external test 
sets with an acceptable accuracy. Removal of all hidden biases from accessible datasets probably 
requires much denser protein-ligand training matrices and a coordinated effort of the drug design 
community to solve the necessary protein-ligand structures. 
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Deep Neural Network (DNN) models have become a popular machine learning technique for 
toxicity prediction of chemicals. Due to their complex structure it is difficult to understand predictions 
made by these models which limits confidence. Current approaches to tackle this problem such as 
SHAP or integrated gradients provide insights by attributing importance to input features of individual 
compounds.1,2 While these methods have produced promising results, they do not shed light on 
representations of compounds in hidden layers. In the realm of image classification models, feature 
visualization has been developed as a tool to depict features learned in specific hidden layer 
neurons.3 Detecting complex chemical features learned in hidden layers might complement current 
approaches for interpreting DNN models used for toxicity prediction.  

The present study focuses on feedforward neural networks with RDKit’s Morgan fingerprints 
as input. A novel method was developed to automatically extract chemical features responsible for 
activation of hidden neurons. This method leverages both information about training compounds 
strongly activating hidden neurons and learned model parameters. Using Ames mutagenicity as a 
well-understood toxicity endpoint, the method was able to extract known toxicophores. Moreover, 
extracted substructures can be mapped onto test compounds to obtain model explanations 
incorporating hidden layer representations of compounds. Using toxicophores from the Derek expert 
system4 as ground truth, the explanatory capability of the approach was evaluated using attribution 
AUCs as metric.5 For the majority of compounds provided explanations match the ground truth very 
well with AUC values above 0.8. 

The proposed method may be used to extract novel toxicophores by leveraging chemical 
features encoded in DNN models. Furthermore, understanding of model predictions is increased by 
providing explanations complementary to those obtained with established attribution methods. While 
not explored in the present study, the proposed method could be adapted to other DNN architectures 
such as graph-convolutional neural networks. 
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Chimiothèque Nationale (CN) — The French National Compound Library — is a library of 

small molecules and natural products.[1] Containing today more than 83K compounds prepared for 
purchase in a format convenient for biological screening, this collection might be a potential source 
of promising hits for drug design. However, there is a lack of detailed analysis of CN, especially with 
respect to other libraries often used in medicinal chemistry. 

In order to identify the place of CN in the chemical space of screening and biologically 
relevant compounds, the library was compared with ZINC in-stock collection[2] (9M purchasable 
molecules offered by different suppliers) and the ChEMBL library[3] (1,6M biologically studied 
compounds). The analysis included physico-chemical properties, Bemis-Murcko (BM) scaffolds[4] 
and chemical space overlap of those libraries on the 2D Generative Topographic Maps (GTM)[5]. In 
addition, to estimate the synthetic uniqueness of CN collection, the retrosynthetic analysis was 
performed with the help of an in-house tool Synt-On[6]. In such a way, the synthesizability of the CN 
compounds by means of combinatorial chemistry combined with commercially available BBs was 
assessed.  

Moreover, hierarchical GTM (“zooming”)[7,8] was applied in order to generate n ensemble of 
maps enabling different levels of navigation of the chemical space of CN – from the general overview 
in the main map to the structural patterns in the local areas of the chemical space. The map was 
separated into small zones and new GTMs were generated focusing only on the compounds 
extracted from the most populated regions. Areas with a low number of residents (less than 1000 
compounds) were analyzed with respect to BM scaffolds. Around 20 physicochemical property 
landscapes were also precomputed and all results were made available in the framework of 
ChemSpace Atlas (https://infochm.chimie.unistra.fr). On this webpage, users can browse through the 
thousands of CN compounds, analyze their properties, compare them with molecules from other 
libraries and perform the analogue search for the small dataset of user-defined compounds. 
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Nowadays, drug discovery is inevitably intertwined with the usage of large compound collections. 
Understanding of their chemotype composition and physicochemical property profiles is of the 
highest importance for successful hit identification. However, the development of efficient 
polyfunctional tools allowing multi-faceted analysis of the constantly growing chemical libraries is 
complicated by the Big Data challenges.  

Thus, we present ChemSpace Atlas (https://infochm.chimie.unistra.fr/) - an intuitive polyvalent 
tool for the ultra-large chemical space exploration and analysis with respect to medicinal chemistry 
problems. Being based on the hierarchical ensemble of tens of thousands of Generative 
Topographic Maps(GTM)[1], it provides access to ChEMBL, ZINC and COCONUT collections 
allowing easy navigation through the hundreds of millions of compounds from a global bird’s eye 
view to structural pattern detection[2]. ChemSpace Atlas functionality is not limited to a simple 
visualization of the similarity relationships in the chemical space but it also allows users to analyze 
physicochemical properties and biological activities, perform polypharmacological profiling (around 
750 biological activities), analogs search, and detailed structural analysis with the help of MCSs and 
scaffolds. In Figure 1 one can see the example of the activity visualization page for CDK4 
(CHEMBL331) ligand series from ChEMBL. 

 

 
Figure 4. Activity visualization page of the ChEMBL activity space Navigator on the example of CDK4 (CHEMBL331) ligands. 1) navigation 
bar; 2) target selection menu; 3) legend of the map; 4) interactive activity landscape; 5) zone population information (if green, bars become 
clickable and corresponding compounds can be displayed); 7) button for downloading compounds from the selected area of the chemical 
space; 8) direct links to the source database (here ChEMBL). 
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Most of the existing computational tools for de novo library design are focused on the generation, 

rational selection, and combination of promising structural motifs to form members of the new library. 
However, the absence of a direct link between the chemical space of the retrosynthetically generated 
fragments and the pool of available reagents makes such approaches appear as rather theoretical 
and reality-disconnected. In this context, we present Synthons Interpreter (Synt-On former SynthI), 
a new open-source toolkit for de novo library design that allows merging those two chemical spaces 
into a single synthons space.1 Here synthons are defined as actual fragments with valid valences 
and special labels, specifying the position and the nature of reactive centers. They can be issued 
from either the "break-up" of reference compounds according to 38 retrosynthetic rules (Synt-On-
Fragmentation Module) or real reagents (building blocks or BBs), after leaving groups withdrawal or 
transformation (Synt-On-BBs Module). Such an approach not only enables the design of 
synthetically accessible libraries and analogs generation (Synt-On-Enumeration Module) but also 
facilitates BBs analysis in the medicinal chemistry context (Synt-On-Classification and Synt-On-BBs 
Modules). Synt-On code is publicly available at https://github.com/Laboratoire-de-
Chemoinformatique/Synt-On. 
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The production of enantiomerically pure organic compounds is a hot topic of modern organic 
chemistry. Enantioselective catalysis is a powerful technology for the synthesis of enantiomerically 
pure compounds using special organic catalysts. Chemoinformatics is an appealing technology 
aiming to empower experimentalists in the quest for developing new catalysts. Preliminary 
theoretical research enables the identification of the most promising catalysts before their 
experimental testing, reducing the time and overheads needed to find an appropriate catalyst.  

We developed a new chemoinformatics-based protocol for constructing accurate models for 
the prediction of catalyst enantioselectivity. The catalysts were represented by multiple 
conformations, which were encoded with new 3D descriptors developed in our group and probed in 
predicting the biological activity of molecules [1]. Models were constructed with multi-instance neural 
networks. Multi-instance (MI) machine learning algorithms can be applied to process the multiple 
conformations (instances) of a catalyst. In the multi-instance approach, a molecule (catalyst) is 
presented by a bag of instances (i.e., a set of conformations), and a label (a selectivity value) is 
available only for a bag (a molecule), but not for individual instances (conformations). The multi-
conformation models were compared with single-conformation models constructed with the lowest-
energy catalyst conformation. 

 
Figure 1: Mean Absolute Error (MAE, kcal/mol) obtained for test sets 1-3. 

 

The 2D, single- and multi-conformation models were built on the training set of 384 data 
points resulted from a combination of 24 catalysts with 16 reactions. The models were validated on 
three test sets selected according to different scenarios: (a) new reactions with known catalysts, (b) 
known reactions with new catalysts, and (c) new reactions with new catalysts. Thus, Test set 1 
contained 216 instances resulted from a combination of 24 catalysts from the training set with 9 new 
reactions, Test set 2 included 314 instances (19 new catalysts / 16 training reactions) and Test set 3 
contained 171 instances (19 new catalysts / 9 new reactions). Performances of 2D, single-
conformation and multi-conformation models (Mean Absolute Error, MAE) in comparison with those 
of the model by Zahrt et al. [2] are given in Figure 1. These results demonstrate the importance of 
accounting for all representative catalyst conformations in predictive modeling. 
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Conventional chemical engineering intakes fossil fuels as raw materials and undergoes harsh 

synthesis to produce pharmaceuticals and industrial chemicals. In contrast, synthetic biology is 
interested in bio-renewable feedstocks at various stages of metabolic pathway, and produce target 
substances in cell organisms or with cell-free biocatalyst, which improves redox efficiency and 
moderates reaction conditions. Addition of synthetic biology into chemical engineering certainly 
opens opportunities for more efficient and sustainable chemical productions.1 The development of 
synthetic biological routes relies on integration of bioinformatic data, to understand high level 
functions and connections of the biological systems. With bioinformatics, scientists explored the 
biological spaces to assist complex molecule (bio)-synthesis. However, our previous work2 indicates 
due to the lack of biological molecules and reactions data, the current bioinformatic space was so 
sparse compared with the chemoinformatic space, the reaction network of organic chemistry (NOC), 
which comprises only 3.5% of the hybridised organic and biological domain. This limits opportunities 
to find sustainable alternatives for chemical reactions.  

Herein, we proposed a workflow pipeline to explore the sparse synthetic biological domain: 
we predicted feasible biological molecules and reactions, and populated the current biological 
dataset. This was specifically based on data mining from a biological database, KEGG, and extended 
on our previous work2 of hybrid chemical and biological reaction network. It started from applying a 
biological-molecule-specific graph method3 to find reactions centres of KEGG recorded molecules, 
and detecting enzymatic transformations from KEGG recorded reactions. Based on the referenced 
reactions, the enzymatic transformations were predicted to functionally and structurally similar 
molecules. In total, 8,857 molecules and 12,422 reactions were predicted. Confidence scores were 
given to the predicted reactions to judge the goodness of predictions.  

To mediate the novel reactions, instead of designing novel heterogeneous enzymes, which 
was believed to be uncertain and time-consuming, we focused on enzymatic promiscuity, which 
expand the specificity of the database recorded enzymes to potential substrates. A machine learning 
tool, an autoencoder based classifier, was applied to learn from gene sequences of enzymes and 
molecular structures of enzymes, and suggest promiscuous enzymes to bind with the substrates in 
the predicted reactions. The well-trained classifier exhibited 83% accuracy from test reaction-
enzyme dataset, and case studies indicate the model expertise (top accuracy) to suggest 
oxidoreductase (EC1) and hydrolases (EC3) enzymes on the test reactions. The binding possibilities 
of the suggested enzyme from the classifier were given to the prediction reactions. The populated 
biological space was analysed to investigate its feasibility to guide bioprocess design. 
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G protein-coupled receptors (GPCRs), the largest family of cell signalling trans-membrane 
proteins, are regulated by diverse small molecules. Allosteric modulators interact with binding sites 
topologically distinct from the orthosteric ligand binding sites, which can be the extracellular, 
intracellular, or extrahelical allosteric sites [1, 2, 3], just to name a few. However, the identification of 
allosteric binding sites has been challenging due to the high diversity of binding modes and protein 
plasticity upon ligand binding. The advances in GPCR structural biology [4] have allowed to examine 
allosteric modulators at a more precise ngle. In this poster, I describe the development and the the 
application of structural bioinformatics and chemogenomics methods to assess ligands from 
structural GPCRome [5]. The analyses from both structural and ligand perspectives have been 
applied to both public and proprietary ligand-bound GPCR structures. This includes druggability 
assessment for the ligand-binding sites and chemoinformatics analysis on the bound ligands. 
Results are discussed to get a better understanding of all the flavors of allosteric ligands in relation 
to the orthosteric binders. This work aims to provide an overview and characterize the current GPCR 
allosteric binding site structure landscape with exciting potential for GPCR drug discovery. 
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The continued efficacy of antibiotics is currently uncertain due to the global dissemination of 

antibiotic-resistance determinants. Without urgent action, it is projected that by the year 2050 deaths 
attributable to these infections will reach 10 million. We aimed to discover new antibiotic compounds 
targeting Klebsiella pneumoniae by applying a chemoinformatics algorithm suited to machine 
learning. We classified the antibiotic activity of a set of 12,250 compounds based on their minimum 
inhibitory concentration (MIC) against Klebsiella pneumoniae, where 75% of the compounds were 
classified as inactive. For each molecule, a set of 80 relevant features that appropriately describe 
the molecular structure was selected. With this dataset, an ensemble model was obtained from a 
selection of artificial neural networks, with different dimensions, depth and parameters to predict the 
antibiotic activity probabilities. Results show that the Stochastic Gradient Descent optimizer 
destabilised the models, whilst the Adam optimizer is faster and more stable. We found that networks 
of medium sizes (around 6,000 parameters) were optimal. We present the predictions of the model 
for a database of known antibiotics and for a database of known drugs. From these, the most 
interesting drugs will be tested in the lab.  

This research was supported by SFI 18/CRT/6214 and the EU’s Horizon 2020 Marie 
Sklodowska-Curie grant H2020-SCA-COFUND-2019-945385. 
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We aim at computing the different parts of a dataset of molecules, considering both their 
chemical structures and their activity towards a biological receptor – in this case Bcr-Abl. To this aim, 
we start by representing a molecule with three molecular fingerprinting either based on state of the 
art ECFP4 descriptors, on the FCFP4s or a new description from our laboratories that uses frequent 
pharmacophores associated to a dataset [1,2]. Then we perform two learned feature transformations 
by passing the data through two feed forward neural network (FFNN), a supervised FFNN and an 
unsupervised one [3]. Those two feature transformations allow to weight the data. Finally, we relied 
on clustering techniques to identify different families of ligands in the studied dataset.  
The partitions obtained by using the former computation initiate a comparative study between the 
different fingerprinting methods: the pharmacophores and ECFP4 and FCFP4 representations. The 
results have demonstrated that our pharmacophores obtain the best results and allow to distinguish 
between three principal families of ligands in addition to efficient results on pharmacophoric decoys. 
 

 
Our work is part of the European project “SCHISM”, funded by the European Union within 
the framework of the Operational Programme ERDF/ESF 2014-2020 
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An important issue in drug discovery is the ability to identify new molecules with optimized 
biological and chemical characteristics for a given protein target, potentially belonging to a different 
structural family compared to known binders. In this context, scaffold hopping refers to the 
identification of molecules having similar binding modes against a target but dissimilar core chemical 
structures. 

There are several degrees to scaffold hopping1, going from the simplest cases where atom 
types in heterocycles are changed - called small-step scaffold hopping - to the hardest situations 
involving molecules with novel core structures: large-step scaffold hopping. Although those cases 
are uncommon, they are of high interest for the development and evaluation of methods able to 
handle molecules belonging to remote chemical spaces. 

In the specific context where the 3D structure of the protein is not known, only ligand-based 
methods can be applied. Evaluating the ability of these methods to identify these chemically distant 
molecules yet able to form the same interactions is of high interest for drug design. For this purpose, 
we explored the PDB BIND2 database to search for large-step scaffold hopping situations using 
protein-ligand interaction fingerprints. We considered the situations where molecules with different 
scaffolds bind to the same protein, as assessed by both the absence of a common generic Murcko 
scaffold and a low Tanimoto similarity according to their Morgan fingerprints, and a high Tanimoto 
similarity according to their interaction fingerprints. Besides, we ensure that no common substructure 
between the two ligands is responsible for their similar binding modes, to avoid easily explainable 
cases. 

Out of the few hundred situations gathered, we selected a diverse set representing 87 
different proteins. For each pair of molecules in a large-step scaffold hopping situation, we selected 
appropriate decoys extracted from the ZINC3 database, having similar physical and chemical 
properties to the ligands. We then conducted similarity searching experiments using traditional 
ligand-based representations, including 2D and 3D pharmacophore representations, to evaluate 
their ability to rank with a higher similarity the scaffold hopping pair compared to the decoys.  

On this benchmark dataset, we observed that on average, 3D representations outperformed 
2D representations, even if conformers are generated instead of the crystallographic conformation. 
However, in only 15% of the cases the molecule in scaffold hopping was ranked in the top 5% most 
similar molecules compared to the reference ligand. This demonstrates a large room for 
improvement for methods aiming at tackling large-step scaffold hopping in the context of ligand-
based drug design. 
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